mona(x)
"mona"
representing the clustering.
See mona.object
for details.agnes
, diana
, and
mona
construct a hierarchy of clusterings, with the number of clusters
ranging from one to the number of observations. Partitioning methods like
pam
, clara
, and fanny
require that the number of clusters be given by
the user.mona
is fully described in chapter 7 of Kaufman and Rousseeuw (1990).
It is "monothetic" in the sense that each division is based on a
single (well-chosen) variable, whereas most other hierarchical methods
(including agnes
and diana
) are "polythetic", i.e. they use
all variables together.
The mona
-algorithm constructs a hierarchy of clusterings,
starting with one large
cluster. Clusters are divided until all observations in the same cluster have
identical values for all variables.
At each stage, all clusters are divided according to the values of one
variable. A cluster is divided into one cluster with all observations having
value 1 for that variable, and another cluster with all observations having
value 0 for that variable.
The variable used for splitting a cluster is the variable with the maximal total association to the other variables, according to the observations in the cluster to be splitted. The association between variables f and g is given by a(f,g)*d(f,g) - b(f,g)*c(f,g), where a(f,g), b(f,g), c(f,g), and d(f,g) are the numbers in the contingency table of f and g. [That is, a(f,g) (resp. d(f,g)) is the number of observations for which f and g both have value 0 (resp. value 1); b(f,g) (resp. c(f,g)) is the number of observations for which f has value 0 (resp. 1) and g has value 1 (resp. 0).] The total association of a variable f is the sum of its associations to all variables.
This algorithm does not work with missing values, therefore the data are revised, e.g. all missing values are filled in. To do this, the same measure of association between variables is used as in the algorithm. When variable f has missing values, the variable g with the largest absolute association to f is looked up. When the association between f and g is positive, any missing value of f is replaced by the value of g for the same observation. If the association between f and g is negative, then any missing value of f is replaced by the value of 1-g for the same observation.
Anja Struyf, Mia Hubert & Peter J. Rousseeuw (1996):
Clustering in an Object-Oriented Environment.
Journal of Statistical Software, 1.
Struyf, A., Hubert, M. and Rousseeuw, P.J. (1997). Integrating Robust Clustering Techniques in S-PLUS, Computational Statistics and Data Analysis, 26, 17-37.
mona.object
, plot.mona
.data(animals)
ma <- mona(animals)
ma
## Plot similar to Figure 10 in Struyf et al (1996)
plot(ma)
Run the code above in your browser using DataLab