
optimize.monmonier
function produces a
monmonier
object by trying several starting points, and
returning the best boundary (i.e. largest sum of local distances). This
is designed to avoid the algorithm to be trapped by a single strong
local difference inside an homogeneous patch.monmonier(xy, dist, cn, threshold=NULL, bd.length=NULL, nrun=1,
skip.local.diff=rep(0,nrun),scanthres=is.null(threshold), allowLoop=TRUE)optimize.monmonier(xy, dist, cn, ntry=10, bd.length=NULL, return.best=TRUE,
display.graph=TRUE, threshold=NULL, scanthres=is.null(threshold), allowLoop=TRUE)
## S3 method for class 'monmonier':
plot(x, variable=NULL,
displayed.runs=1:x$nrun, add.arrows=TRUE,
col='blue', lty=1, bwd=4, clegend=1, csize=0.7,
method=c('squaresize','greylevel'), sub='', csub=1, possub='topleft',
cneig=1, pixmap=NULL, contour=NULL, area=NULL, add.plot=FALSE, ...)
## S3 method for class 'monmonier':
print(x, \dots)
dist
, giving the distances between the objectsnb
(package spdep
)nrun
); each integer gives the number of starting point to skip, to avoid being stuck in a local difference between two neighbours into an homogeneous patch; none are skipped by defs.value
(package
ade4
)s.value
, the size factor of the legend if a variable is representeds.value
, the size factor of the squares used to represent a variables.value
, a character giving the method to be used to represent the variable, either 'squaresize' (by default) or 'greylevel'pixmap
displayed in the map backgroundmonmonier
, which contains the following elements :nb
monmonier
returns a list of the class monmonier
, which contains the general informations about the algorithm, and about each run.
When displayed, the width of the boundaries reflects their 'strength'.
Let a segment MN be part of the path, M being the middle of AB, N of CD.
Then the boundary width for MN is proportionnal to (d(AB)+d(CD))/2.
As there is no perfect method to display graphically a quantitative
variable (see for instance the differences between the two methods of
s.value
), the boundaries provided by this algorithm seem
sometimes more reliable than the boundaries our eyes perceive (or miss).Manni, F., Guerard, E. and Heyer, E. (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by "Monmonier's algorithm". Human Biology, 76, 173--190
spca
,edit.nb
if(require(spdep)){
### non-interactive example
# est-west separation
load(system.file("files/mondata1.rda",package="adegenet"))
cn1 <- chooseCN(mondata1$xy,type=2,ask=FALSE)
mon1 <- monmonier(mondata1$xy,dist(mondata1$x1),cn1,threshold=2)
plot(mon1,mondata1$x1)
plot(mon1,mondata1$x1,met="greylevel",add.arr=FALSE,col="red",bwd=6,lty=2)
# square in the middle
load(system.file("files/mondata2.rda",package="adegenet"))
cn2 <- chooseCN(mondata2$xy,type=1,ask=FALSE)
mon2 <- monmonier(mondata2$xy,dist(mondata2$x2),cn2,threshold=2)
plot(mon2,mondata2$x2,method="greylevel",add.arr=FALSE,bwd=6,col="red",csize=.5)
### genetic data example
data(sim2pop)
if(require(hierfstat)){
## try and find the Fst
fstat(sim2pop,fst=TRUE)
# Fst = 0.038
}
## run monmonier algorithm
# build connection network
gab <- chooseCN(sim2pop@other$xy,ask=FALSE,type=2)
# filter random noise
pca1 <- dudi.pca(sim2pop@tab,scale=FALSE, scannf=FALSE, nf=1)
# run the algorithm
mon1 <- monmonier(sim2pop@other$xy,dist(pca1$l1[,1]),gab,scanthres=FALSE)
# graphical display
plot(mon1,var=pca1$l1[,1])
temp <- sim2pop@pop
levels(temp) <- c(17,19)
temp <- as.numeric(as.character(temp))
plot(mon1)
points(sim2pop@other$xy,pch=temp,cex=2)
legend("topright",leg=c("Pop A", "Pop B"),pch=c(17,19))
### interactive example
# north-south separation
xy <- matrix(runif(120,0,10), ncol=2)
x1 <- rnorm(60)
x1[xy[,2] > 5] <- x1[xy[,2] > 5]+3
cn1 <- chooseCN(xy,type=1,ask=FALSE)
mon1 <- optimize.monmonier(xy,dist(x1)^2,cn1,ntry=10)
# graphics
plot(mon1,x1,met="greylevel",csize=.6)
# island in the middle
x2 <- rnorm(60)
sel <- (xy[,1]>3.5 & xy[,2]>3.5 & xy[,1]<6.5 & xy[,2]<6.5)
x2[sel] <- x2[sel]+4
cn2 <- chooseCN(xy,type=1,ask=FALSE)
mon2 <- optimize.monmonier(xy,dist(x2)^2,cn2,ntry=10)
# graphics
plot(mon2,x2,method="greylevel",add.arr=FALSE,bwd=6,col="red",csize=.5)
}
Run the code above in your browser using DataLab