A simple function to compute Moran's I, called by moran.test and moran.mc;
$$I = \frac{n}{\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}}
\frac{\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}(x_i-\bar{x})(x_j-\bar{x})}{\sum_{i=1}^{n}(x_i - \bar{x})^2}$$
Usage
moran(x, listw, n, S0, zero.policy=FALSE)
Arguments
x
a numeric vector the same length as the neighbours list in listw
listw
a listw object created for example by nb2listw
n
number of zones
S0
global sum of weights
zero.policy
if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA
Value
a list of
IMoran's I
Ksample kurtosis of x
References
Cliff, A. D., Ord, J. K. 1981 Spatial processes, Pion, p. 17.