mstepE( data, z, prior=NULL, warn=NULL, ...)
mstepV( data, z, prior=NULL, warn=NULL, ...)
mstepEII( data, z, prior=NULL, warn=NULL, ...)
mstepVII( data, z, prior=NULL, warn=NULL, ...)
mstepEEI( data, z, prior=NULL, warn=NULL, ...)
mstepVEI( data, z, prior=NULL, warn=NULL, control=NULL, ...)
mstepEVI( data, z, prior=NULL, warn=NULL, ...)
mstepVVI( data, z, prior=NULL, warn=NULL, ...)
mstepEEE( data, z, prior=NULL, warn=NULL, ...)
mstepEEV( data, z, prior=NULL, warn=NULL, ...)
mstepVEV( data, z, prior=NULL, warn=NULL, control=NULL,...)
mstepVVV( data, z, prior=NULL, warn=NULL, ...)
[i,k]
th entry is the
conditional probability of the ith observation belonging to
the kth component of the mixture.
In analyses involving noise, this should not include the
conditional probabilities fomclust.options("warn")
."VEI"
and "VEV"
that have an iterative M-step. This should be a list with components
named itmax and tol. These components can be of length 1
or 2; in the ldo.call
."info"
For those models with iterative M-steps
("VEI"
and "VEV"
), information on the iteration.
"WARNING"
An appropriate warning if problems are
encountered in the computations.mstep
,
me
,
estep
,
priorControl
emControl
mstepVII(data = iris[,-5], z = unmap(iris[,5]))
Run the code above in your browser using DataLab