mstepE(data, z, equalPro, noise = FALSE, ...)
mstepV(data, z, equalPro, noise = FALSE, ...)
mstepEII(data, z, equalPro, noise = FALSE, ...)
mstepVII(data, z, equalPro, noise = FALSE, ...)
mstepEEI(data, z, equalPro, noise = FALSE, eps, warnSingular, ...)
mstepVEI(data, z, equalPro, noise = FALSE, eps, tol, itmax, warnSingular, ...)
mstepEVI(data, z, equalPro, noise = FALSE, eps, warnSingular, ...)
mstepVVI(data, z, equalPro, noise = FALSE, eps, warnSingular, ...)
mstepEEE(data, z, equalPro, noise = FALSE, ...)
mstepEEV(data, z, equalPro, noise = FALSE, eps, warnSingular, ...)
mstepVVV(data, z, equalPro, noise = FALSE, ...)
[i,k]
th entry is the
conditional probability of the ith observation belonging to
the kth component of the mixture..Mclust$equalPro
.hypvol
to the data.
Used only when noise = TRUE
.eps
allows computations to
proceed nearer to singularity.
The default is .Mclust$eps
.Mclust$tol
..Mclust$itmax
..Mclust$warnSingular
.
Not used for models "EII", "VII", "EEE", "VVV".do.call
.[,,k]
th entry is the
the covariance matrix of the kth component of the mixture.[i,k]
th entry is the
conditional probability of the ith observation belonging to
the kth component of the mixture."info"
Information on the iteration.
"warn"
An appropriate warning if problems are
encountered in the computations.mstep
,
me
,
estep
,
mclustOptions
mstepVII(data = irisMatrix, z = unmap(irisClass))