serialIndepTest
) for multivariate time
series. The main difference comes from the fact that critical values
and p-values are obtainted through the bootstrap/permutation
methodology, since, here, test statistics are not distribution-free.multSerialIndepTest(x, lag.max, m=lag.max+1, N=1000, alpha=0.05,
verbose = TRUE, print.every = NULL)
m << lag.max+1
especially when lag.max
is large.verbose
.txtProgressBar
."multSerialIndepTest"
returns an object of class
"indepTest"
whose attributes are: subsets
,
statistics
, critical.values
, pvalues
,
fisher.pvalue
(a p-value resulting from a combination à la
Fisher of the subset statistic p-values), tippett.pvalue
(a p-value
resulting from a combination à la Tippett of the subset
statistic p-values), alpha
(global significance level of the
test), beta
(1 - beta
is the significance level per statistic),
global.statistic
(value of the global Cramér-von Mises
statistic derived directly from
the independence empirical copula process - see In
in the last
reference) and global.statistic.pvalue
(corresponding p-value).Deheuvels, P. (1981), A non parametric test for independence, Publ. Inst. Statist. Univ. Paris. 26, 29--50.
Genest, C. and R
Ghoudi, K., Kulperger, R., and R
Kojadinovic, I. and Yan, J. (2011), Tests of multivariate serial independence based on a Möbius decomposition of the independence empirical copula process, Annals of the Institute of Statistical Mathematics 63, 347--373.
serialIndepTest
,
indepTest
,
multIndepTest
,
dependogram
## A multivariate time series
d <- 2
n <- 100
param <- 0.25
ar <- matrix(0,2*n,d)
ar[1,] <- rnorm(d)
for (i in 2:(2*n))
ar[i,] <- matrix(param,d,d) %*% ar[i-1,] + rnorm(d)
x <- ar[(n+1):(2*n),]
## Run the test
test <- multSerialIndepTest(x,3)
test
## Display the dependogram
dependogram(test,print=TRUE)
Run the code above in your browser using DataLab