set.seed(444)
taxa <- simFossilTaxa(p=0.1,q=0.1, nruns=1, mintaxa=20,
maxtaxa=30, maxtime=1000, maxExtant=0)
rangesCont <- sampleRanges(taxa, r=0.5)
rangesDisc <- binTimeData(rangesCont, int.length=1)
cladogram<-taxa2cladogram(taxa, plot=TRUE)
#using multiDiv with very different data types
ttree <- timePaleoPhy(cladogram, rangesCont, type="basic", add.term=TRUE, plot=FALSE)
input <- list(rangesCont, rangesDisc, ttree)
multiDiv(input, plot=TRUE)
#using fixed interval times
multiDiv(input, int.times=rangesDisc[[1]], plot=TRUE)
#using multiDiv with samples of trees
ttrees <- timePaleoPhy(cladogram, rangesCont, type="basic",
randres=TRUE, ntrees=10, add.term=TRUE)
multiDiv(ttrees)
#uncertainty in diversity history is solely due to
#the random resolution of polytomies
#multiDiv can also take output from simFossilTaxa
#what do many simulations run under some conditions 'look' like on average?
set.seed(444)
taxa <- simFossilTaxa(p=0.3, q=0.1, nruns=20, maxtime=20, maxtaxa=100,
plot=TRUE, min.cond=FALSE)
multiDiv(taxa)
#increasing cone of diversity!
#Even better on a log scale:
multiDiv(taxa, plotLogRich=TRUE)
#pure-birth example with simFossilTaxa
#note that conditioning is tricky
taxa <- simFossilTaxa(p=0.1, q=0, mintime=10, mintaxa=10, maxtime=50, maxtaxa=50,
nruns=10, plot=TRUE)
multiDiv(taxa,plotLogRich=TRUE)
#compare many discrete diversity curves
taxa <- simFossilTaxa(p=0.1,q=0.1,nruns=20,maxtime=20,
mintaxa=10,maxtaxa=100,plot=FALSE,min.cond=FALSE)
multiDiv(lapply(taxa,function(x) binTimeData(sampleRanges(x, r=0.5,
min.taxa=1), int.length=1)))
layout(1)
Run the code above in your browser using DataLab