# NOT RUN {
prediction <- predict(br(toyml), toyml)
mlconfmat <- multilabel_confusion_matrix(toyml, prediction)
# Label with the most number of True Positive values
which.max(mlconfmat$TPl)
# Number of wrong predictions for each label
errors <- mlconfmat$FPl + mlconfmat$FNl
# Examples predict with all labels
which(mlconfmat$Zi == toyml$measures$num.labels)
# You can join one or more mlconfmat
part1 <- create_subset(toyml, 1:50)
part2 <- create_subset(toyml, 51:100)
confmatp1 <- multilabel_confusion_matrix(part1, prediction[1:50, ])
confmatp2 <- multilabel_confusion_matrix(part2, prediction[51:100, ])
mlconfmat <- confmatp1 + confmatp2
# }
Run the code above in your browser using DataLab