The function converts a matrix with the correlations among multivariate normal test statistics to a matrix with the covariances among various target statistics. In particular, assume [arrayc t_i \\ t_j array] MVN ([arrayc 0 \\ 0 array], [arraycc 1 & _ij \\ _ij & 1 array] )bmatrix t_i \\\ t_j bmatrix MVN (bmatrix 0 \\\ 0 bmatrix, bmatrix 1 & _ij \\\ _ij & 1 bmatrix )[t_i, t_j]' ~ MVN([0,0]', [1, rho_ij | rho_ij, 1]) is the joint distribution for test statistics t_i and t_j. For side = 1
, let p_i = 1 - (t_i)p_i = 1 - Phi(t_i) and p_j = 1 - (t_j)p_j = 1 - Phi(t_j) where ()Phi(.) denotes the cumulative distribution function of a standard normal distribution. For side = 2
, let p_i = 2(1 - (|t_i|))p_i = 2(1 - Phi(|t_i|)) and p_j = 2(1 - (|t_j|))p_j = 2(1 - Phi(|t_j|)). These are simply the one- and two-sided p-values corresponding to t_i and t_j.
If target = "p"
, the function computes Cov[p_i, p_j]Cov[p_i, p_j].
If target = "m2lp"
, the function computes Cov[-2 (p_i), -2 (p_j)]Cov[-2 ln(p_i), -2 ln(p_j)].
If target = "chisq1"
, the function computes Cov[F^-1(1 - p_i, 1), F^-1(1 - p_j, 1)]Cov[F^-1(1 - p_i, 1), F^-1(1 - p_j, 1)], where F^-1(,1)F^-1(.,1) denotes the inverse of the cumulative distribution function of a chi-square distribution with one degree of freedom.
If target = "z"
, the function computes Cov[^-1(1 - p_i), ^-1(1 - p_j)]Cov[Phi^-1(1 - p_i), Phi^-1(1 - p_j)], where ^-1()Phi^-1(.) denotes the inverse of the cumulative distribution function of a standard normal distribution.