Learn R Programming

Distributacalcul (version 0.4.0)

NBinom: Negative Binomial Distribution

Description

Negative binomial distribution with parameters \(r\) (number of successful trials) and \(p\) (probability of success).

Usage

expValNBinom(
  size,
  prob = (1/(1 + beta)),
  beta = ((1 - prob)/prob),
  nb_tries = FALSE
)

varNBinom( size, prob = (1/(1 + beta)), beta = ((1 - prob)/prob), nb_tries = FALSE )

mgfNBinom( t, size, prob = (1/(1 + beta)), beta = ((1 - prob)/prob), nb_tries = FALSE )

pgfNBinom( t, size, prob = (1/(1 + beta)), beta = ((1 - prob)/prob), nb_tries = FALSE )

Value

Function :

  • expValNBinom gives the expected value.

  • varNBinom gives the variance.

  • mgfNBinom gives the moment generating function (MGF).

  • pgfNBinom gives the probability generating function (PGF).

Invalid parameter values will return an error detailing which parameter is problematic.

Arguments

size

Number of successful trials.

prob

Probability of success in each trial.

beta

Alternative parameterization of the negative binomial distribution where beta = (1 - p) / p.

nb_tries

logical; if FALSE (default) number of trials until the rth success, otherwise, number of failures until the rth success.

t

t.

Details

When \(k\) is the number of failures until the \(r\)th success, with a probability \(p\) of a success, the negative binomial has density: $$\left(\frac{r + k - 1}{k}\right) (p)^{r} (1 - p)^{k}$$ for \(k \in \{0, 1, \dots \}\)

When \(k\) is the number of trials until the \(r\)th success, with a probability \(p\) of a success, the negative binomial has density: $$\left(\frac{k - 1}{r - 1}\right) (p)^{r} (1 - p)^{k - r}$$ for \(k \in \{r, r + 1, r + 2, \dots \}\)

The alternative parameterization of the negative binomial with parameter \(\beta\), and \(k\) being the number of trials, has density: $$\frac{\Gamma(r + k)}{\Gamma(r) k!} \left(\frac{1}{1 + \beta}\right)^{r}% \left(\frac{\beta}{1 + \beta}\right)^{k - r}$$ for \(k \in \{0, 1, \dots \}\)

Examples

Run this code
# Where k is the number of trials for a rth success
expValNBinom(size = 2, prob = .4)

# Where k is the number of failures before a rth success
expValNBinom(size = 2, prob = .4, nb_tries = TRUE)

# With alternative parameterization where k is the number of trials
expValNBinom(size = 2, beta = 1.5)


# Where k is the number of trials for a rth success
varNBinom(size = 2, prob = .4)

# Where k is the number of failures before a rth success
varNBinom(size = 2, prob = .4, nb_tries = TRUE)

# With alternative parameterization where k is the number of trials
varNBinom(size = 2, beta = 1.5)

mgfNBinom(t = 1, size = 4, prob = 0.5)

pgfNBinom(t = 5, size = 3, prob = 0.3)

Run the code above in your browser using DataLab