
Computes the negative binomial-ordinal transformation, including its inverse and the first two derivatives.
nbordlink(theta, cutpoint = NULL, k = NULL,
inverse = FALSE, deriv = 0, short = TRUE, tag = FALSE)
Numeric or character. See below for further details.
Here, k
is the negbinomial
.
The cutpoints should be non-negative integers.
If nbordlink()
is used as the link function in
cumulative
then one should choose
reverse = TRUE, parallel = TRUE
.
Details at Links
.
See Yee (2018) for details.
The negative binomial-ordinal link function (NBOLF) can be applied to a parameter lying in the unit interval. Its purpose is to link cumulative probabilities associated with an ordinal response coming from an underlying negative binomial distribution.
See Links
for general information about VGAM
link functions.
Yee, T. W. (2018) Ordinal ordination with normalizing link functions for count data, (in preparation).
Links
,
negbinomial
,
pordlink
,
gordlink
,
nbord2link
,
cumulative
,
CommonVGAMffArguments
.
# NOT RUN {
nbordlink("p", cutpoint = 2, k = 1, short = FALSE)
nbordlink("p", cutpoint = 2, k = 1, tag = TRUE)
p <- seq(0.02, 0.98, by = 0.01)
y <- nbordlink(p,cutpoint = 2, k = 1)
y. <- nbordlink(p,cutpoint = 2, k = 1, deriv = 1)
max(abs(nbordlink(y,cutpoint = 2, k = 1, inv = TRUE) - p)) # Should be 0
#\ dontrun{ par(mfrow = c(2, 1), las = 1)
#plot(p, y, type = "l", col = "blue", main = "nbordlink()")
#abline(h = 0, v = 0.5, col = "red", lty = "dashed")
#
#plot(p, y., type = "l", col = "blue",
# main = "(Reciprocal of) first NBOLF derivative") }
# Another example
nn <- 1000
x2 <- sort(runif(nn))
x3 <- runif(nn)
mymu <- exp( 3 + 1 * x2 - 2 * x3)
k <- 4
y1 <- rnbinom(nn, mu = mymu, size = k)
cutpoints <- c(-Inf, 10, 20, Inf)
cuty <- Cut(y1, breaks = cutpoints)
#\ dontrun{ plot(x2, x3, col = cuty, pch = as.character(cuty)) }
table(cuty) / sum(table(cuty))
fit <- vglm(cuty ~ x2 + x3, trace = TRUE,
cumulative(reverse = TRUE, multiple.responses = TRUE,
parallel = TRUE,
link = nbordlink(cutpoint = cutpoints[2:3], k = k)))
head(depvar(fit))
head(fitted(fit))
head(predict(fit))
coef(fit)
coef(fit, matrix = TRUE)
constraints(fit)
fit@misc
# }
Run the code above in your browser using DataLab