
Compute the nearest positive definite matrix to an approximate one, typically a correlation or variance-covariance matrix.
nearPD(x, corr = FALSE, keepDiag = FALSE, base.matrix = FALSE,
do2eigen = TRUE, doSym = FALSE,
doDykstra = TRUE, only.values = FALSE,
ensureSymmetry = !isSymmetric(x),
eig.tol = 1e-06, conv.tol = 1e-07, posd.tol = 1e-08,
maxit = 100, conv.norm.type = "I", trace = FALSE)
If only.values = TRUE
, a numeric vector of eigenvalues of the
approximating matrix;
Otherwise, as by default, an S3 object of class
"nearPD"
, basically a list with components
a matrix of class dpoMatrix
, the
computed positive-definite matrix.
numeric vector of eigenvalues of mat
.
logical, just the argument corr
.
the Frobenius norm (norm(x-X, "F")
) of the
difference between the original and the resulting matrix.
number of iterations needed.
logical indicating if iterations converged.
numeric x
is not symmetric (and
ensureSymmetry
is not false), symmpart(x)
is used.
logical indicating if the matrix should be a correlation matrix.
logical, generalizing corr
: if TRUE
, the
resulting matrix should have the same diagonal
(diag(x)
) as the input matrix.
logical indicating if the resulting mat
component should be a base matrix
or (by default) a
Matrix
of class dpoMatrix
.
logical indicating if a
posdefify()
eigen step should be applied to
the result of the Higham algorithm.
logical indicating if X <- (X + t(X))/2
should be
done, after X <- tcrossprod(Qd, Q)
; some doubt if this is necessary.
logical indicating if Dykstra's correction should be
used; true by default. If false, the algorithm is basically the
direct fixpoint iteration
logical; if TRUE
, the result is just the
vector of eigenvalues of the approximating matrix.
logical; by default, symmpart(x)
is used whenever isSymmetric(x)
is not true. The user
can explicitly set this to TRUE
or FALSE
, saving the
symmetry test. Beware however that setting it FALSE
for an asymmetric input x
, is typically nonsense!
defines relative positiveness of eigenvalues compared
to largest one,
convergence tolerance for Higham algorithm.
tolerance for enforcing positive definiteness (in the
final posdefify
step when do2eigen
is TRUE
).
maximum number of iterations allowed.
convergence norm type (norm(*,
type)
) used for Higham algorithm. The default is "I"
(infinity), for reasons of speed (and back compatibility); using
"F"
is more in line with Higham's proposal.
logical or integer specifying if convergence monitoring should be traced.
Jens Oehlschlägel donated a first version. Subsequent changes by the Matrix package authors.
This implements the algorithm of Higham (2002), and then (if
do2eigen
is true) forces positive definiteness using code from
posdefify
. The algorithm of Knol and ten
Berge (1989) (not implemented here) is more general in that it
allows constraints to (1) fix some rows (and columns) of the matrix and
(2) force the smallest eigenvalue to have a certain value.
Note that setting corr = TRUE
just sets diag(.) <- 1
within the algorithm.
Higham (2002) uses Dykstra's correction, but the version by Jens
Oehlschlägel did not use it (accidentally),
and still gave reasonable results; this simplification, now only
used if doDykstra = FALSE
,
was active in nearPD()
up to Matrix version 0.999375-40.
Cheng, Sheung Hun and Higham, Nick (1998) A Modified Cholesky Algorithm Based on a Symmetric Indefinite Factorization; SIAM J. Matrix Anal.\ Appl., 19, 1097--1110.
Knol DL, ten Berge JMF (1989) Least-squares approximation of an improper correlation matrix by a proper one. Psychometrika 54, 53--61.
Higham, Nick (2002) Computing the nearest correlation matrix - a problem from finance; IMA Journal of Numerical Analysis 22, 329--343.
A first version of this (with non-optional corr=TRUE
)
has been available as nearcor()
; and
more simple versions with a similar purpose
posdefify()
, both from package sfsmisc.
library( stats, pos = "package:base", verbose = FALSE)
library( graphics, pos = "package:base", verbose = FALSE)
library(grDevices, pos = "package:base", verbose = FALSE)
library( utils, pos = "package:base", verbose = FALSE)
## Higham(2002), p.334f - simple example
A <- matrix(1, 3,3); A[1,3] <- A[3,1] <- 0
n.A <- nearPD(A, corr=TRUE, do2eigen=FALSE)
n.A[c("mat", "normF")]
n.A.m <- nearPD(A, corr=TRUE, do2eigen=FALSE, base.matrix=TRUE)$mat
stopifnot(exprs = { #=--------------
all.equal(n.A$mat[1,2], 0.760689917)
all.equal(n.A$normF, 0.52779033, tolerance=1e-9)
all.equal(n.A.m, unname(as.matrix(n.A$mat)), tolerance = 1e-15)# seen rel.d.= 1.46e-16
})
set.seed(27)
m <- matrix(round(rnorm(25),2), 5, 5)
m <- m + t(m)
diag(m) <- pmax(0, diag(m)) + 1
(m <- round(cov2cor(m), 2))
str(near.m <- nearPD(m, trace = TRUE))
round(near.m$mat, 2)
norm(m - near.m$mat) # 1.102 / 1.08
if(requireNamespace("sfsmisc")) {
m2 <- sfsmisc::posdefify(m) # a simpler approach
norm(m - m2) # 1.185, i.e., slightly "less near"
}
round(nearPD(m, only.values=TRUE), 9)
## A longer example, extended from Jens' original,
## showing the effects of some of the options:
pr <- Matrix(c(1, 0.477, 0.644, 0.478, 0.651, 0.826,
0.477, 1, 0.516, 0.233, 0.682, 0.75,
0.644, 0.516, 1, 0.599, 0.581, 0.742,
0.478, 0.233, 0.599, 1, 0.741, 0.8,
0.651, 0.682, 0.581, 0.741, 1, 0.798,
0.826, 0.75, 0.742, 0.8, 0.798, 1),
nrow = 6, ncol = 6)
nc. <- nearPD(pr, conv.tol = 1e-7) # default
nc.$iterations # 2
nc.1 <- nearPD(pr, conv.tol = 1e-7, corr = TRUE)
nc.1$iterations # 11 / 12 (!)
ncr <- nearPD(pr, conv.tol = 1e-15)
str(ncr)# still 2 iterations
ncr.1 <- nearPD(pr, conv.tol = 1e-15, corr = TRUE)
ncr.1 $ iterations # 27 / 30 !
ncF <- nearPD(pr, conv.tol = 1e-15, conv.norm = "F")
stopifnot(all.equal(ncr, ncF))# norm type does not matter at all in this example
## But indeed, the 'corr = TRUE' constraint did ensure a better solution;
## cov2cor() does not just fix it up equivalently :
norm(pr - cov2cor(ncr$mat)) # = 0.09994
norm(pr - ncr.1$mat) # = 0.08746 / 0.08805
### 3) a real data example from a 'systemfit' model (3 eq.):
(load(system.file("external", "symW.rda", package="Matrix"))) # "symW"
dim(symW) # 24 x 24
class(symW)# "dsCMatrix": sparse symmetric
if(dev.interactive()) image(symW)
EV <- eigen(symW, only=TRUE)$values
summary(EV) ## looking more closely {EV sorted decreasingly}:
tail(EV)# all 6 are negative
EV2 <- eigen(sWpos <- nearPD(symW)$mat, only=TRUE)$values
stopifnot(EV2 > 0)
if(requireNamespace("sfsmisc")) {
plot(pmax(1e-3,EV), EV2, type="o", log="xy", xaxt="n", yaxt="n")
for(side in 1:2) sfsmisc::eaxis(side)
} else
plot(pmax(1e-3,EV), EV2, type="o", log="xy")
abline(0, 1, col="red3", lty=2)
Run the code above in your browser using DataLab