Learn R Programming

sfsmisc (version 1.1-19)

nearcor: Find the Nearest Proper Correlation Matrix

Description

This function “smoothes” an improper correlation matrix as it can result from cor with use="pairwise.complete.obs" or hetcor.

It is deprecated now, in favor of nearPD() from package Matrix.

Usage

nearcor(R, eig.tol = 1e-6, conv.tol = 1e-07, posd.tol = 1e-8,
        maxits = 100, verbose = FALSE)

Value

A list, with components

cor

resulting correlation matrix

fnorm

Froebenius norm of difference of input and output

iterations

number of iterations used

converged

logical

Arguments

R

a square symmetric approximate correlation matrix

eig.tol

defines relative positiveness of eigenvalues compared to largest, default=1e-6.

conv.tol

convergence tolerance for algorithm, default=1.0e-7

posd.tol

tolerance for enforcing positive definiteness, default=1.0e-8

maxits

maximum number of iterations

verbose

logical specifying if convergence monitoring should be verbose.

Author

Jens Oehlschlägel

Details

This implements the algorithm of Higham (2002), then forces symmetry, then forces positive definiteness using code from posdefify. This implementation does not make use of direct LAPACK access for tuning purposes as in the MATLAB code of Lucas (2001). The algorithm of Knol DL and ten Berge (1989) (not implemented here) is more general in (1) that it allows contraints to fix some rows (and columns) of the matrix and (2) to force the smallest eigenvalue to have a certain value.

References

See those in posdefify.

See Also

the slightly more flexible nearPD which also returns a classed matrix (class dpoMatrix). For new code, nearPD() is really preferred to nearcor(), which hence is considered deprecated.

hetcor, eigen; posdefify for a simpler algorithm.

Examples

Run this code
 cat("pr is the example matrix used in Knol DL, ten Berge (1989)\n")
 pr <- matrix(c(1,     0.477, 0.644, 0.478, 0.651, 0.826,
		0.477, 1,     0.516, 0.233, 0.682, 0.75,
		0.644, 0.516, 1,     0.599, 0.581, 0.742,
		0.478, 0.233, 0.599, 1,     0.741, 0.8,
		0.651, 0.682, 0.581, 0.741, 1,     0.798,
		0.826, 0.75,  0.742, 0.8,   0.798, 1),
	      nrow = 6, ncol = 6)

 ncr <- nearcor(pr)
 nr <- ncr$cor
 # \dontshow{
  stopifnot(all.equal(nr[lower.tri(nr)],
            c(0.487968018215891, 0.642651880010905, 0.490638670907082, 0.64409905308119,
              0.808711184549399, 0.514114729435273, 0.250668810831206, 0.672351311297071,
              0.725832055882792, 0.596827778712155, 0.582191779051908, 0.744963163381413,
              0.729882058012398, 0.772150225146827, 0.813191720191943)))
 # }
 plot(pr[lower.tri(pr)],
      nr[lower.tri(nr)]); abline(0,1, lty=2)
 round(cbind(eigen(pr)$values, eigen(nr)$values), 8)

 cat("The following will fail:\n")
 try(factanal(cov=pr, factors=2))
 cat("and this should work\n")
 try(factanal(cov=nr, factors=2))

 if(require("polycor")) {

    n <- 400
    x <- rnorm(n)
    y <- rnorm(n)

    x1 <- (x + rnorm(n))/2
    x2 <- (x + rnorm(n))/2
    x3 <- (x + rnorm(n))/2
    x4 <- (x + rnorm(n))/2

    y1 <- (y + rnorm(n))/2
    y2 <- (y + rnorm(n))/2
    y3 <- (y + rnorm(n))/2
    y4 <- (y + rnorm(n))/2

    dat <- data.frame(x1, x2, x3, x4, y1, y2, y3, y4)

    x1 <- ordered(as.integer(x1 > 0))
    x2 <- ordered(as.integer(x2 > 0))
    x3 <- ordered(as.integer(x3 > 1))
    x4 <- ordered(as.integer(x4 > -1))

    y1 <- ordered(as.integer(y1 > 0))
    y2 <- ordered(as.integer(y2 > 0))
    y3 <- ordered(as.integer(y3 > 1))
    y4 <- ordered(as.integer(y4 > -1))

    odat <- data.frame(x1, x2, x3, x4, y1, y2, y3, y4)

    xcor <- cor(dat)
    pcor <- cor(data.matrix(odat)) # cor() no longer works for factors
    hcor <- hetcor(odat, ML=TRUE, std.err=FALSE)$correlations
    ncor <- nearcor(hcor)$cor

    try(factanal(covmat=xcor, factors=2, n.obs=n))
    try(factanal(covmat=pcor, factors=2, n.obs=n))
    try(factanal(covmat=hcor, factors=2, n.obs=n))
    try(factanal(covmat=ncor, factors=2, n.obs=n))
  }

Run the code above in your browser using DataLab