random
are a subset of
the lmList
object coefficient names, initial estimates for the
covariance matrix of the random effects are obtained (overwriting any
values given in random
). formula(fixed)
and the
data
argument in the calling sequence used to obtain
fixed
are passed as the fixed
and data
arguments
to nlme.formula
, together with any other additional arguments in
the function call. See the documentation on nlme.formula
for a
description of that function.## S3 method for class 'nlsList':
nlme(model, data, fixed, random, groups, start, correlation, weights,
subset, method, na.action, naPattern, control, verbose)
nlsList
,
representing a list of nls
fits with a common model.pdMat
object with a formula
attribute. Multiple levels of grouping are not allowed with this
method function. Defaults to a formula consisting o~g1
(single level of nesting) or ~g1/.../gQ
(multiple levels of
nesting), specifying the partitions of the data over which the random
effects vary. g1,...,gQ
must evfixed
, given by the vector. The fi
corStruct
object describing the
within-group correlation structure. See the documentation of
corClasses
for a description of the available corStruct
classes. Defaults to NULL
, corresvarFunc
object or one-sided formula
describing the within-group heteroscedasticity structure. If given as
a formula, it is used as the argument to varFixed
,
corresponding to fixed variance weights. See the dodata
that should be used in the fit. This can be a logical
vector, or a numeric vector indicating which observation numbers are
to be included, or a character vector of th"REML"
the model is fit by
maximizing the restricted log-likelihood. If "ML"
the
log-likelihood is maximized. Defaults to "ML"
.NA
s. The default action (na.fail
) causes
nlme
to print an error message and terminate if there are any
incomplete observations.nlmeControl
.
Defaults to an empty list.TRUE
information on
the evolution of the iterative algorithm is printed. Default is
FALSE
.nlme
representing the linear mixed-effects
model fit. Generic functions such as print
, plot
and
summary
have methods to show the results of the fit. See
nlmeObject
for the components of the fit. The functions
resid
, coef
, fitted
, fixed.effects
, and
random.effects
can be used to extract some of its components.Davidian, M. and Giltinan, D.M. (1995) "Nonlinear Mixed Effects Models for Repeated Measurement Data", Chapman and Hall.
Laird, N.M. and Ware, J.H. (1982) "Random-Effects Models for Longitudinal Data", Biometrics, 38, 963-974.
Lindstrom, M.J. and Bates, D.M. (1988) "Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data", Journal of the American Statistical Association, 83, 1014-1022.
Littel, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996) "SAS Systems for Mixed Models", SAS Institute.
Pinheiro, J.C. and Bates., D.M. (1996) "Unconstrained Parametrizations for Variance-Covariance Matrices", Statistics and Computing, 6, 289-296.
Venables, W.N. and Ripley, B.D. (1997) "Modern Applied Statistics with S-plus", 2nd Edition, Springer-Verlag.
nlme
, lmList
,
nlmeObject
fm1 <- nlsList(SSasymp, data = Loblolly)
fm2 <- nlme(fm1, random = Asym ~ 1)
summary(fm1)
summary(fm2)
Run the code above in your browser using DataLab