# NOT RUN {
x <- rnbinom(100, mu = 10, size = 10)
hdev <- function(par)
-sum(dnbinom(x, mu = par[1], size = par[2], log = TRUE))
nlminb(c(9, 12), hdev)
nlminb(c(20, 20), hdev, lower = 0, upper = Inf)
nlminb(c(20, 20), hdev, lower = 0.001, upper = Inf)
## slightly modified from the S-PLUS help page for nlminb
# this example minimizes a sum of squares with known solution y
sumsq <- function( x, y) {sum((x-y)^2)}
y <- rep(1,5)
x0 <- rnorm(length(y))
nlminb(start = x0, sumsq, y = y)
# now use bounds with a y that has some components outside the bounds
y <- c( 0, 2, 0, -2, 0)
nlminb(start = x0, sumsq, lower = -1, upper = 1, y = y)
# try using the gradient
sumsq.g <- function(x, y) 2*(x-y)
nlminb(start = x0, sumsq, sumsq.g,
lower = -1, upper = 1, y = y)
# now use the hessian, too
sumsq.h <- function(x, y) diag(2, nrow = length(x))
nlminb(start = x0, sumsq, sumsq.g, sumsq.h,
lower = -1, upper = 1, y = y)
## Rest lifted from optim help page
fr <- function(x) { ## Rosenbrock Banana function
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2
}
grr <- function(x) { ## Gradient of 'fr'
x1 <- x[1]
x2 <- x[2]
c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),
200 * (x2 - x1 * x1))
}
nlminb(c(-1.2,1), fr)
nlminb(c(-1.2,1), fr, grr)
flb <- function(x)
{ p <- length(x); sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2) }
## 25-dimensional box constrained
## par[24] is *not* at boundary
nlminb(rep(3, 25), flb, lower = rep(2, 25), upper = rep(4, 25))
## trying to use a too small tolerance:
r <- nlminb(rep(3, 25), flb, control = list(rel.tol = 1e-16))
stopifnot(grepl("rel.tol", r$message))
# }
Run the code above in your browser using DataLab