Learn R Programming

pracma (version 1.5.5)

normest: Estimated Matrix Norm

Description

Estimate the 2-norm of a real (or complex-valued) matrix. 2-norm is also the maximum absolute eigenvalue of M, computed here using the power method.

Usage

normest(M, maxiter = 100, tol = .Machine$double.eps^(1/2))

Arguments

M
Numeric matrix; vectors will be considered as column vectors.
maxiter
Maximum number of iterations allowed; default: 100.
tol
Tolerance used for stopping the iteration.

Value

  • 2-norm of the matrix as a positive real number.

Details

Estimate the 2-norm of the matrix M, typically used for large or sparse matrices, where the cost of calculating the norm (A) is prohibitive and an approximation to the 2-norm is acceptable. Theoretically, the 2-norm of a matrix $M$ is defined as

$||M||_2 = max \frac{||M*x||_2}{||x||_2}$ for all $x \neq 0$

where $||.||_2$ is the Euclidean/Frobenius norm.

References

Trefethen, L. N., and D. Bau III. (1997). Numerical Linear Algebra. SIAM, Philadelphia.

See Also

cond, svd

Examples

Run this code
normest(magic(5)) == max(svd(magic(5))$d)  # TRUE
normest(magic(100))                        # 500050

Run the code above in your browser using DataLab