sigma2Estimated variance of the normal error density
costCost value
accept_hAccept or reject. accept_h=1 indicates acceptance, while accept_h=0 indicates rejection.
mutsizpStep size of random-walk Metropolis
Details
1) The log bandwidths of the regressors are initialized using the normal reference rule of Silverman (1986).
2) Conditioning on the variance parameter of the error density, we implement random-walk Metropolis
algorithm to update the bandwidths, in order to achieve the minimum cost value.
3) The variance of the error density can be directly sampled.
4) Iterate steps 2) and 3) until the cost value is minimized.
5) Check the convergence of the parameters by examining the simulation inefficient factor (sif) value.
The smaller the sif value is, the better convergence of the parameters is.
References
X. Zhang and R. D. Brooks and M. L. King (2009) A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation,
Journal of Econometrics, 153, 21-32.