nrm(x, cat, theta, dimensions = 1, items, information = FALSE, angle, ...)## S4 method for signature 'matrix', 'numeric'
nrm(x, cat, theta, dimensions, items, information, angle, ...)
## S4 method for signature 'data.frame', 'numeric'
nrm(x, cat, theta, dimensions, items, information, angle, ...)
## S4 method for signature 'list', 'numeric'
nrm(x, cat, theta, dimensions, items, information, angle, ...)
## S4 method for signature 'irt.pars', 'ANY'
nrm(x, cat, theta, dimensions, items, information, angle, ...)
## S4 method for signature 'sep.pars', 'ANY'
nrm(x, cat, theta, dimensions, items, information, angle, ...)
theta
is not specified, an equal interval range of values from -4 to 4 is used
with an increment of 0.5. See details below for more information. TRUE
compute item information. In the multidimensional
case, information will be computed in the directions specified by angle
or default angles
of 0 - 90 in increments of 10 degrees.angle
is a vector, the same set of angles will be used relative to each of the corresponding axes.
NA
. NA
. The next
four columns would include the category difficulty values, and the last column would
be NA
. NA
. Columns 11-14 would include the
category difficulties associated with the first dimension and columns 19-20 would
be NA
. NA
(see the examples for method x = "matrix" for
specification details). "irt.pars"
. If x
contains
dichotomous items or items associated with another polytomous model, a warning
will be displayed stating that probabilities will be computed for the nrm
items only. If x
contains parameters for multiple groups, a list of
"irt.prob"
objects will be returned.sep.pars
. If x
contains
dichotomous items or items associated with another polytomous model, a warning
will be displayed stating that probabilities will be computed for the nrm
items only.theta
can be specified as a vector, matrix, or list. For the unidimensional case, theta
should be a vector. If a matrix or list of values is supplied, they will be converted to a single vector
of theta values. For the multidimensional case, if a vector of values is supplied it will be assumed
that this same set of values should be used for each dimension. Probabilities will be computed for each
combination of theta values. Similarly, if a list is supplied, probabilities will be computed for each
combination of theta values. In instances where probabilities are desired for specific combinations of
theta values, a j x m matrix should be specified for j ability points and m dimensions where the columns
are ordered from dimension 1 to m.mixed:
compute probabilities for mixed-format items
plot:
plot item characteristic/category curves
,
, :
classes###### Unidimensional Example ######
## Item parameters from Bock (1972, p. 46,47)
a <- matrix(c(.905, .522, -.469, -.959, NA,
.828, .375, -.357, -.079, -.817), 2,5,byrow=TRUE)
c <- matrix(c(.126, -.206, -.257, .336, NA,
.565, .865, -1.186, -1.199, .993), 2,5,byrow=TRUE)
pars <- cbind(a,c)
x <- nrm(pars, c(4,5))
plot(x,auto.key=list(space="right"))
###### Multidimensional Example ######
# From Bolt & Johnson (in press)
pars <- matrix(c(-1.28, -1.029, -0.537, 0.015, 0.519, 0.969, 1.343,
1.473, -0.585, -0.561, -0.445, -0.741, -0.584, 1.444,
0.29, 0.01, 0.04, 0.34, 0, -0.04, -0.63), 1,21)
x <- nrm(pars, cat=7, dimensions=2)
# Plot separated surfaces
plot(x,separate=TRUE,drape=TRUE)
Run the code above in your browser using DataLab