sigr
Concise formatting of significances in R.
Please see Adding polished significance summaries to papers using R for some discussion.
See also:
- “The prevalence of statistical reporting errors in psychology (1985–2013)”, Nuijten, M.B., Hartgerink, C.H.J., van Assen, M.A.L.M. et al., Behav Res (2015), doi:10.3758/s13428-015-0664-2
- Reporting Statistics in APA Style
- Publication Manual of the American Psychological Association, Seventh Edition
- Proofing statistics in papers
- apa
- bootstrap
- broom
- achetverikov/APAstats
- pwr
- ggstatsplot
- “Why Most Published Research Findings Are False”, John P. A. Ioannidis PLOS Medicine, August 30, 2005
- “The garden of forking paths”, Andrew Gelman and Eric Loken, 14 Nov 2013
sigr is a small package that concentrates on computing summary statistics and reporting in an appropriate format.
For example here is formatting the quality of a logistic regression.
d <- data.frame(x=c(1,2,3,4,5,6,7,7),
y=c(TRUE,FALSE,FALSE,FALSE,TRUE,TRUE,TRUE,FALSE))
model <- glm(y~x,data=d,family=binomial)
summary(model)
##
## Call:
## glm(formula = y ~ x, family = binomial, data = d)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.7455 1.6672 -0.447 0.655
## x 0.1702 0.3429 0.496 0.620
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 11.090 on 7 degrees of freedom
## Residual deviance: 10.837 on 6 degrees of freedom
## AIC: 14.837
##
## Number of Fisher Scoring iterations: 4
library("sigr")
cat(render(wrapChiSqTest(model),
pLargeCutoff=1, format='markdown'))
Chi-Square Test summary: pseudo-R2=0.02282 (χ2(1,N=8)=0.2531, p=0.6149).
To install, from inside R
please run:
install.packages("sigr")