Learn R Programming

keras (version 2.7.0)

optimizer_adagrad: Adagrad optimizer.

Description

Adagrad optimizer as described in Adaptive Subgradient Methods for Online Learning and Stochastic Optimization.

Usage

optimizer_adagrad(
  learning_rate = 0.01,
  epsilon = NULL,
  decay = 0,
  clipnorm = NULL,
  clipvalue = NULL,
  ...
)

Arguments

learning_rate

float >= 0. Learning rate.

epsilon

float >= 0. Fuzz factor. If NULL, defaults to k_epsilon().

decay

float >= 0. Learning rate decay over each update.

clipnorm

Gradients will be clipped when their L2 norm exceeds this value.

clipvalue

Gradients will be clipped when their absolute value exceeds this value.

...

Unused, present only for backwards compatability

See Also

Other optimizers: optimizer_adadelta(), optimizer_adamax(), optimizer_adam(), optimizer_nadam(), optimizer_rmsprop(), optimizer_sgd()