# NOT RUN {
# generate simple artificial example of two clusters
clus1.v1 <- runif(100)
clus2.v1 <- runif(100)
xample <- rbind(cbind(clus1.v1, 0.5 - clus1.v1), cbind(clus2.v1, -0.5 + clus2.v1))
plot(xample, col=rep(1:2, each=100))
# try standard kmeans clustering
kmeans.res <- kmeans(xample, 2)
plot(xample, col = kmeans.res$cluster)
# use orclus instead
orclus.res <- orclus(x = xample, k = 2, l = 1, k0 = 8, a = 0.5)
plot(xample, col = orclus.res$cluster)
# show data in cluster-specific subspaces
par(mfrow=c(1,2))
for(i in 1:length(orclus.res$size)) plot(xample %*% orclus.res$subspaces[[i]],
col = orclus.res$cluster, ylab = paste("Identified subspace for cluster",i))
### second 'more multivariate' example to play with...
# definition of a function for parameterized data simulation
sim.orclus <- function(k = 3, nk = 100, d = 10, l = 4,
sd.cl = 0.05, sd.rest = 1, locshift = 1){
### input parameters for data generation
# k number of clusters
# nk observations per cluster
# d original dimension of the data
# l subspace dimension where the clusters are concentrated
# sd.cl (within cluster subspace) standard deviations for data generation
# sd.rest standard deviations in the remaining space
# locshift parameter of a uniform distribution to sample different cluster means
x <- NULL
for(i in 1:k){
# cluster centers
apts <- locshift*matrix(runif(l*k), ncol = l)
# sample points in original space
xi.original <- cbind(matrix(rnorm(nk * l, sd = sd.cl), ncol=l) + matrix(rep(apts[i,], nk),
ncol = l, byrow = TRUE),
matrix(rnorm(nk * (d-l), sd = sd.rest), ncol = (d-l)))
# subspace generation
sym.mat <- matrix(nrow=d, ncol=d)
for(m in 1:d){
for(n in 1:m){
sym.mat[m,n] <- sym.mat[n,m] <- runif(1)
}
}
subspace <- eigen(sym.mat)$vectors
# transformation
xi.transformed <- xi.original %*% subspace
x <- rbind(x, xi.transformed)
}
clids <- rep(1:k, each = nk)
result <- list(x = x, cluster = clids)
return(result)
}
# simulate data, you can play with different parameterizations...
simdata <- sim.orclus(k = 3, nk = 200, d = 15, l = 4,
sd.cl = 0.05, sd.rest = 1, locshift = 1)
# apply kmeans and orclus
kmeans.res2 <- kmeans(simdata$x, 3)
orclus.res2 <- orclus(x = simdata$x, k = 3, l = 4, k0 = 15, a = 0.75)
cat("SC: ", orclus.res2$sparsity.coefficient, "\n")
# compare results
table(kmeans.res2$cluster, simdata$cluster)
table(orclus.res2$cluster, simdata$cluster)
# }
Run the code above in your browser using DataLab