Learn R Programming

proportion (version 2.0.0)

pCOpBIBA: p-confidence and p-bias for Bayesian method given n and alpha level and priors a & b

Description

p-confidence and p-bias for Bayesian method given n and alpha level and priors a & b

Usage

pCOpBIBA(n, alp, a1, a2)

Arguments

n
- Number of trials
alp
- Alpha value (significance level required)
a1
- Shape parameter 1 for prior Beta distribution in Bayesian model
a2
- Shape parameter 2 for prior Beta distribution in Bayesian model

Value

A dataframe with
x1
Number of successes (positive samples)
pconfQ
p-Confidence Quantile
pbiasQ
p-Bias Quantile
pconfH
p-Confidence HPD
pbiasH
p-Bias HPD

Details

Evaluation of Bayesian Highest Probability Density (HPD) and two tailed intervals using p-confidence and p-bias for the \(n + 1\) intervals for the Beta - Binomial conjugate prior model for the probability of success p

References

[1] 2005 Vos PW and Hudson S. Evaluation Criteria for Discrete Confidence Intervals: Beyond Coverage and Length. The American Statistician: 59; 137 - 142.

See Also

Other p-confidence and p-bias of base methods: PlotpCOpBIAS, PlotpCOpBIAll, PlotpCOpBIBA, PlotpCOpBIEX, PlotpCOpBILR, PlotpCOpBILT, PlotpCOpBISC, PlotpCOpBITW, PlotpCOpBIWD, pCOpBIAS, pCOpBIAll, pCOpBIEX, pCOpBILR, pCOpBILT, pCOpBISC, pCOpBITW, pCOpBIWD

Examples

Run this code
n=5; alp=0.05;a1=1;a2=1
pCOpBIBA(n,alp,a1,a2)

Run the code above in your browser using DataLab