Learn R Programming

flowMerge (version 2.20.0)

pFlowMerge: Parellel call to flowMerge

Description

Calls the flowMerge methods to compute the merged solution from a flowClust object or set of objects in a parallelized manner using the snow framework.

Usage

pFlowMerge(flowData, cl, K = 1:15, B.init = 100, tol.init = 0.01, tol = 1e-05, B = 500, randomStart = 10, nu = 4, nu.est = 0, trans = 1, varNames = NA)

Arguments

flowData
The data to be fit. A list of flowFrames, a flowSet or a flowFrame
cl
The snow cluster object. Can be NULL to call the non-parallel version of flowClust
K
See flowClust documentation
B.init
See flowClust documentation
tol.init
See flowClust documentation
tol
See flowClust documentation
B
See flowClust documentation
randomStart
See flowClust documentation
nu
See flowClust documentation
nu.est
See flowClust documentation
trans
See flowClust documentation
varNames
See flowClust documentation

Value

A list of flowMerge objects. One per flowFrame passed into the method.

Warning

This function does not do any special memory management. A large data set will likely cause it to run out of memory and start swapping incessantly. If you have lots of data, it's best to feed it piecewise to pFlowClust.

Details

Makes a parallelized call to flowClust. Parses the results to extract the max BIC solution, merges clusters, finds the optimal k-cluster solution using the entropy and returns it. If cl is NULL, a non-parallel call is made to the flowClust function.

References

Finak G, Bashasharti A, Brinkmann R, Gottardo R. Merging Mixture Model Components for Improved Cell Population Identification in High Throughput Flow Cytometry Data (Submitted)

See Also

pFlowClust,flowClust,merge,snow, fitPiecewiseLinreg

Examples

Run this code
data(rituximab)
#Parallelized call below:
## Not run: cl<-makeSOCKcluster(rep("finakg@localhost",7))
## Not run: result<-pFlowMerge(rituximab,cl,varNames=c("FSC.H","SSC.H"))
## Not run: plot(result)
#cl<-NULL;
#result<-pFlowMerge(rituximab,cl=NULL,varNames=c("FSC.H","SSC.H"),K=1:8);
#plot(result);

Run the code above in your browser using DataLab