trim=1
). The parameters are computed as$$\kappa = \frac{10-45\tau_3}{9\tau_3+10} \mbox{,}$$ $$\alpha = \frac{1}{6}\lambda_2(\kappa+2)(\kappa+3)(\kappa+4) \mbox{, and}$$ $$\xi = \lambda_1 - \frac{\alpha(\kappa+5)}{(\kappa+2)(\kappa+3)} \mbox{.}$$
parTLgpa(lmom)
TLmoms
.list
is returned.gpa
.Hosking, J.R.M., 1990, L-moments---Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, vol. 52, p. 105--124.
Hosking, J.R.M. and Wallis, J.R., 1997, Regional frequency analysis---An approach based on L-moments: Cambridge University Press.
TLmoms
, lmomTLgpa
,
cdfgpa
, quagpa
TL <- TLmoms(rnorm(20),trim=1)
parTLgpa(TL)
Run the code above in your browser using DataLab