# NOT RUN {
### data ###
## artificial WeatherPlay data
data("WeatherPlay", package = "partykit")
str(WeatherPlay)
### splits ###
## split in overcast, humidity, and windy
sp_o <- partysplit(1L, index = 1:3)
sp_h <- partysplit(3L, breaks = 75)
sp_w <- partysplit(4L, index = 1:2)
## query labels
character_split(sp_o)
### nodes ###
## set up partynode structure
pn <- partynode(1L, split = sp_o, kids = list(
partynode(2L, split = sp_h, kids = list(
partynode(3L, info = "yes"),
partynode(4L, info = "no"))),
partynode(5L, info = "yes"),
partynode(6L, split = sp_w, kids = list(
partynode(7L, info = "yes"),
partynode(8L, info = "no")))))
pn
### tree ###
## party: associate recursive partynode structure with data
py <- party(pn, WeatherPlay)
py
plot(py)
### variations ###
## tree stump
n1 <- partynode(id = 1L, split = sp_o, kids = lapply(2L:4L, partynode))
print(n1, data = WeatherPlay)
## query fitted nodes and kids ids
fitted_node(n1, data = WeatherPlay)
kidids_node(n1, data = WeatherPlay)
## tree with full data sets
t1 <- party(n1, data = WeatherPlay)
## tree with empty data set
party(n1, data = WeatherPlay[0, ])
## constant-fit tree
t2 <- party(n1,
data = WeatherPlay,
fitted = data.frame(
"(fitted)" = fitted_node(n1, data = WeatherPlay),
"(response)" = WeatherPlay$play,
check.names = FALSE),
terms = terms(play ~ ., data = WeatherPlay),
)
t2 <- as.constparty(t2)
t2
plot(t2)
# }
Run the code above in your browser using DataLab