Learn R Programming

robCompositions (version 1.6.3)

pcaCoDa: Robust principal component analysis for compositional data

Description

This function applies robust principal component analysis for compositional data.

Usage

pcaCoDa(x, method = "robust")

Arguments

x
compositional data
method
either robust (default) or standard

Value

  • scoresscores in clr space
  • loadingsloadings in clr space
  • eigenvalueseigenvalues of the clr covariance matrix
  • methodmethod
  • princompOutputClroutput of princomp needed in plot.pcaCoDa

Details

The compositional data set is transformed using the ilr tranformation. Afterwards, robust principal component analysis is performed. Resulting loadings and scores are back-transformed to the clr space where the compositional biplot can be shown.

References

Filzmoser, P., Hron, K., Reimann, C. (2009) Principal Component Analysis for Compositional Data with Outliers. Environmetrics, 20, 621-632.

See Also

print.pcaCoDa, plot.pcaCoDa

Examples

Run this code
data(expenditures)
p1 <- pcaCoDa(expenditures)
p1
plot(p1)

Run the code above in your browser using DataLab