# NOT RUN {
require(graphics)
dchisq(1, df = 1:3)
pchisq(1, df = 3)
pchisq(1, df = 3, ncp = 0:4) # includes the above
x <- 1:10
## Chi-squared(df = 2) is a special exponential distribution
all.equal(dchisq(x, df = 2), dexp(x, 1/2))
all.equal(pchisq(x, df = 2), pexp(x, 1/2))
## non-central RNG -- df = 0 with ncp > 0: Z0 has point mass at 0!
Z0 <- rchisq(100, df = 0, ncp = 2.)
graphics::stem(Z0)
# }
# NOT RUN {
## visual testing
## do P-P plots for 1000 points at various degrees of freedom
L <- 1.2; n <- 1000; pp <- ppoints(n)
op <- par(mfrow = c(3,3), mar = c(3,3,1,1)+.1, mgp = c(1.5,.6,0),
oma = c(0,0,3,0))
for(df in 2^(4*rnorm(9))) {
plot(pp, sort(pchisq(rr <- rchisq(n, df = df, ncp = L), df = df, ncp = L)),
ylab = "pchisq(rchisq(.),.)", pch = ".")
mtext(paste("df = ", formatC(df, digits = 4)), line = -2, adj = 0.05)
abline(0, 1, col = 2)
}
mtext(expression("P-P plots : Noncentral "*
chi^2 *"(n=1000, df=X, ncp= 1.2)"),
cex = 1.5, font = 2, outer = TRUE)
par(op)
# }
# NOT RUN {
## "analytical" test
lam <- seq(0, 100, by = .25)
p00 <- pchisq(0, df = 0, ncp = lam)
p.0 <- pchisq(1e-300, df = 0, ncp = lam)
stopifnot(all.equal(p00, exp(-lam/2)),
all.equal(p.0, exp(-lam/2)))
# }
Run the code above in your browser using DataLab