Learn R Programming

label.switching (version 1.8)

permute.mcmc: Reorder MCMC samples

Description

This function applies the permutation returned by any relabelling algorithm to a simulated MCMC output.

Usage

permute.mcmc(mcmc, permutations)

Arguments

mcmc

\(m\times K\times J\) array of simulated MCMC parameters.

permutations

\(m\times K\) dimensional array of permutations.

Value

output

\(m\times K\times J\) array of reordered MCMC parameters.

See Also

label.switching, ecr, ecr.iterative.1, ecr.iterative.2,stephens,pra, sjw, aic, dataBased

Examples

Run this code
# NOT RUN {
#load MCMC simulated data
data("mcmc_output")
mcmc.pars<-data_list$"mcmc.pars"
z<-data_list$"z"
K<-data_list$"K"

#apply \code{ecr.iterative.1} algorithm
run<-ecr.iterative.1(z = z, K = 2)
#reorder the MCMC output according to this method:
reordered.mcmc<-permute.mcmc(mcmc.pars,run$permutations)
# reordered.mcmc[,,1]: reordered means of the two components
# reordered.mcmc[,,2]: reordered variances of the components
# reordered.mcmc[,,3]: reordered weights of the two components
# }

Run the code above in your browser using DataLab