# load data
data(zoo)
# feature matrix without intercept
x <- zoo[,2:17]
# class vector
y <- zoo[,18]
# lambda vector
lam.vec <- (1:10)/10
# run 10 fold cross validation across lambdas
cv <- cv.vda.r(x, y, 10, lam.vec)
# plot CV results
plot(cv)
# Perform VDA with CV-selected optimal lambda
out <- vda.r(x,y,cv$lam.opt)
# Predict five cases based on VDA
fivecases <- matrix(0,5,16)
fivecases[1,] <- c(1,0,0,1,0,0,0,1,1,1,0,0,4,0,1,0)
fivecases[2,] <- c(1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1)
fivecases[3,] <- c(0,1,1,0,1,0,0,0,1,1,0,0,2,1,1,0)
fivecases[4,] <- c(0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0)
fivecases[5,] <- c(0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0)
predict(out, fivecases)
Run the code above in your browser using DataLab