## univariate example
x <- rnorm.mixt(n=100, mus=1, sigmas=1, props=1)
fhat <- kde(x=x, h=hpi(x))
plot(fhat)
## bivariate example
data(unicef)
H.scv <- Hscv(x=unicef)
fhat <- kde(x=unicef, H=H.scv, compute.cont=TRUE)
plot(fhat, drawpoints=TRUE, drawlabels=FALSE, col=3, lwd=3, cex=0.1)
plot(fhat, display="persp", border=NA, col="grey96", shade=0.75)
plot(fhat, display="image", col=rev(heat.colors(100)))
plot(fhat, display="filled.contour2", cont=seq(10,90,by=10))
## pair of densities with same absolute contour levels
x <- rmvnorm.mixt(n=100, mus=c(0,0), Sigmas=diag(2), props=1)
Hx <- Hpi(x)
fhatx <- kde(x=x, H=Hx, xmin=c(-4,-4), xmax=c(4,4))
y <- rmvnorm.mixt(n=100, mus=c(0.5,0.5), Sigmas=0.5*diag(2), props=1)
Hy <- Hpi(y)
fhaty <- kde(x=y, H=Hy, xmin=c(-4,-4), xmax=c(4,4))
lev <- contourLevels(fhatx, prob=c(0.25, 0.5, 0.75))
plot(fhatx, abs.cont=lev)
plot(fhaty, abs.cont=lev, col=3, add=TRUE)
## large sample from bivariate normal
x <- rmvnorm.mixt(5000, c(0,0), invvech(c(1, 0.8, 1)))
H <- Hpi(x, binned=TRUE)
fhat <- kde(x, H=H, compute.cont=TRUE, approx.cont=TRUE)
plotmixt(mus=c(0,0), Sigmas=invvech(c(1, 0.8, 1)), props=1)
plot(fhat, drawlabels=FALSE, add=TRUE, col=2)
## trivariate example
library(MASS)
x <- iris[,1:3]
H.pi <- Hpi(x, pilot="samse")
fhat <- kde(x, H=H.pi, compute.cont=TRUE)
plot(fhat, axes=FALSE, box=FALSE, drawpoints=TRUE); axes3d(c('x','y','z'))
Run the code above in your browser using DataLab