Learn R Programming

lvm4net (version 0.3)

plot.lsm: Two dimensional plot of the Latent Space Model output

Description

Function to plot an object of class 'lsm'

Usage

# S3 method for lsm
plot(x, Y, drawCB = FALSE, dimZ = c(1, 2), colPl = 1,
  colEll = rgb(0.6, 0.6, 0.6, alpha = 0.1), LEVEL = 0.95,
  pchplot = 20, pchEll = 19, pchPl = 19, cexPl = 1.1,
  arrowhead = FALSE, curve = NULL, xlim = NULL, ylim = NULL, ...)

Arguments

x

object of class 'lsm'

Y

(N x N) binary adjacency matrix

drawCB

draw confidence bounds

dimZ

dimensions of the latent variable to be plotted. Default dimZ = c(1, 2)

colPl

col for the points representing the nodes. Default colPl = NULL

colEll

col for the ellipses. Default rgb(.6, .6 ,.6 , alpha=.1)

LEVEL

levels of confidence bounds shown when plotting the ellipses. Default LEVEL = .95

pchplot

Default pchplot = 20

pchEll

pch for the ellipses. Default pchEll = 19

pchPl

pch for the points representing the nodes. Default pchPl = 19

cexPl

cex for the points representing the nodes. Default cexPl = 1.1

arrowhead

logical, if the arrowed are to be plotted. Default arrowhead = FALSE

curve

curvature of edges. Default curve = 0

xlim

range for x

ylim

range for y

...

Arguments to be passed to methods, such as graphical parameters (see par).

Examples

Run this code
# NOT RUN {
N <- 20
Y <- network(N, directed = FALSE)[,]

modLSM <- lsm(Y, D = 2) 
plot(modLSM, Y)

# Plot with 95% CB
plot(modLSM, Y, drawCB = TRUE)
# Plot with 99% CB
plot(modLSM, Y, drawCB = TRUE, LEVEL = .99)
# }

Run the code above in your browser using DataLab