Learn R Programming

blockmodeling (version 0.1.9)

plot.mat: Functions for plotting a partitioned matrix

Description

The main function plot.mat plots a (optionally partitioned) matrix. If the matrix is partitioned, the rows and columns of the matrix are rearranged according to the partitions. Other functions are only wrappers for plot.mat for convenience when plotting the results of the corresponding functions. The plot.mat.nm plots two matrices based on M, normalized by rows and columns, next to each other.

Usage

plot.mat(x=M, M=x, clu = NULL, ylab = "", xlab = "", main = NULL,
   print.val = !length(table(M)) <= 2,="" print.0="FALSE," plot.legend="!print.val" &&="" !length(table(m))="" <="2," print.legend.val="out" ,="" print.digits.legend="2," print.digits.cells="2," print.cells.mf="NULL," outer.title="!plot.legend," title.line="ifelse(outer.title," -1.5,="" 7),="" mar="c(0.5," 7,="" 8.5,="" 0)="" +="" 0.1,="" cex.val="default" val.y.coor.cor="0," val.x.coor.cor="0," cex.legend="1," legend.title="Legend" cex.axes="default" print.axes.val="NULL," print.x.axis.val="!is.null(colnames(M))," print.y.axis.val="!is.null(rownames(M))," x.axis.val.pos="1.1," y.axis.val.pos="-0.1," cex.main="par()$cex.main," cex.lab="par()$cex.lab," yaxis.line="-1.5," xaxis.line="-1," legend.left="0.4," legend.up="0.03," legend.size="1/min(dim(M))," legend.text.hor.pos="0.5," par.line.width="3," par.line.col="blue" im.dens="NULL," im="NULL," wnet="1," wim="NULL," use.im="length(dim(IM))==length(dim(M))|!is.null(wIM)," dens.leg="c(null" =="" 100),="" blackdens="70," plotlines="TRUE," ...)="" plot.mat.nm(x="M," m="x," ...,="" main.title="NULL," title.row="Row normalized" title.col="Column normalized" main.title.line="-2," par.set="list(mfrow" c(1,="" 2)))<="" p="">

# S3 method for mat plot(x=M, M=x, clu = NULL, ylab = "", xlab = "", main = NULL, print.val = !length(table(M)) <= 2,="" print.0="FALSE," plot.legend="!print.val" &&="" !length(table(m))="" <="2," print.legend.val="out" ,="" print.digits.legend="2," print.digits.cells="2," print.cells.mf="NULL," outer.title="!plot.legend," title.line="ifelse(outer.title," -1.5,="" 7),="" mar="c(0.5," 7,="" 8.5,="" 0)="" +="" 0.1,="" cex.val="default" val.y.coor.cor="0," val.x.coor.cor="0," cex.legend="1," legend.title="Legend" cex.axes="default" print.axes.val="NULL," print.x.axis.val="!is.null(colnames(M))," print.y.axis.val="!is.null(rownames(M))," x.axis.val.pos="1.1," y.axis.val.pos="-0.1," cex.main="par()$cex.main," cex.lab="par()$cex.lab," yaxis.line="-1.5," xaxis.line="-1," legend.left="0.4," legend.up="0.03," legend.size="1/min(dim(M))," legend.text.hor.pos="0.5," par.line.width="3," par.line.col="blue" im.dens="NULL," im="NULL," wnet="1," wim="NULL," use.im="length(dim(IM))" =="length(dim(M))" |="" !is.null(wim),="" dens.leg="c(null" 100),="" blackdens="70," plotlines="TRUE," ...)<="" p="">

# S3 method for crit.fun plot(x, main = NULL, ...)

# S3 method for opt.par plot(x, main = NULL, which = 1, ...)

# S3 method for opt.par.mode plot(x, main = NULL, which = 1, ...)

# S3 method for opt.more.par plot(x, main = NULL, which = 1, ...)

# S3 method for opt.more.par.mode plot(x, main = NULL, which = 1, ...)

# S3 method for check.these.par plot(x, main = NULL, which = 1, ...)

Arguments

x

A result from a corespodning function or a matrix or similar object representing a network

M

A matrix or similar object representing a network - either x or M must be supplied - both are here to make the code compatible with generic and with older functions

clu

A partition

ylab

Label for y axis

xlab

Label for x axis

main

Main title

main.title

Main title in nm version

main.title.line

The line in which main title is printed in nm version

title.row

Title for the row-normalized matrix in nm version

title.col

Title for the column-normalized matrix in nm version

par.set

A list of possible ploting paramters (to par) to be used in nm version

print.val

Should the values be printed in the matrix

print.0

If print.val=TRUE Should the 0s be printed in the matrix

plot.legend

Should the legend for shades be ploted

print.legend.val

Should the values be printed in the legend

print.digits.legend

The number of digits that should appear in the legend

print.digits.cells

The number of digits that should appear in the cells (of the matrix and/or legend)

print.cells.mf

if not NULL, the above argument is igonred, the cell values are printed as the cell are multiplied by this factor and rounded

outer.title

Should the title be printed on the 'inner' or 'outer' plot, default is 'inner' if legend is ploted and 'outer' otherwise. May be soon omited.

title.line

The line (from the top) where the title should be printed. The suitable values depend heavily on the displey type.

mar

A numerical vector of the form 'c(bottom, left, top, right)' which gives the lines of margin to be specified on the four sides of the plot. The R default for ordianry plots is 'c(5, 4, 4, 2) + 0.1', while this functions default is c(0.5, 7, 8.5, 0) + 0.1.

cex.val

Size of the values printed. The "default" is 10/"number of units"

val.y.coor.cor

Correction for centering the values in the sqares in y direction

val.x.coor.cor

Correction for centering the values in the sqares in x direction

cex.legend

Size of the text in the legend

legend.title

The title of the legend

cex.axes

Size of the characters in axes, 'default' makes the cex so small that all categories can be printed

print.axes.val

Should the axes values be printed, 'default' prints each axis if 'rownames' or 'colnames' is not 'NULL'

print.x.axis.val

Should the x axis values be printed, 'default' prints each axis if 'rownames' or 'colnames' is not 'NULL'

print.y.axis.val

Should the y axis values be printed, 'default' prints each axis if 'rownames' or 'colnames' is not 'NULL'

x.axis.val.pos

x coordiante of the y axis values

y.axis.val.pos

y coordiante of the x axis values

cex.main

Size of the text in the main title

cex.lab

Size of the text in matrix

yaxis.line

The position of the y axis (the argument 'line')

xaxis.line

The position of the x axis (the argument 'line')

legend.left

How much left should the legend be from the matrix

legend.up

How much up should the legend be from the matrix

legend.size

Relative legend size

legend.text.hor.pos

Horizontal position of the legend text (bottom) - 0 = bottom, 0.5 = middle,...

par.line.width

The width of the line that seperates the partitions

par.line.col

The color of the line that seperates the partitions

IM.dens

The densitiey of shading lines for each block

IM

The image (as obtaind with crit.fun) of the blockmodel. dens.leg is used to translate this image into IM.dens.

dens.leg

It is used to translate the IM into IM.dens.

blackdens

At which density should the values on dark colurs of lines be printed in white.

plotLines

Should the lines in the matrix be printed - default TRUE, best set to FALSE for larger networks.

which

Which (if there are more than one) of optimal solutions to plot

wnet

Specifies which net (if more) should be ploted - used if M is an array.

wIM

Specifies which IM (if more) should be used for ploting (defualt = wnet) - used if IM is an array.

use.IM

Specifies if IM should IM be used for ploting? be used for ploting?

Aditional arguments to plot.default for plot.mat and also to plot.mat for other functions

Value

The functions are used for their side affect - plotting.

References

<U+017D>IBERNA, Ale<U+0161> (2006): Generalized Blockmodeling of Valued Networks. Social Networks, Jan. 2007, vol. 29, no. 1, 105-126. http://dx.doi.org/10.1016/j.socnet.2006.04.002.

<U+017D>IBERNA, Ale<U+0161>. Direct and indirect approaches to blockmodeling of valued networks in terms of regular equivalence. J. math. sociol., 2008, vol. 32, no. 1, 57-84. http://www.informaworld.com/smpp/content?content=10.1080/00222500701790207.

See Also

crit.fun, opt.par, opt.random.par, opt.these.par, check.these.par

Examples

Run this code
# NOT RUN {
#Generation of the network
n<-20
net<-matrix(NA,ncol=n,nrow=n)
clu<-rep(1:2,times=c(5,15))
tclu<-table(clu)
net[clu==1,clu==1]<-rnorm(n=tclu[1]*tclu[1],mean=0,sd=1)
net[clu==1,clu==2]<-rnorm(n=tclu[1]*tclu[2],mean=4,sd=1)
net[clu==2,clu==1]<-rnorm(n=tclu[2]*tclu[1],mean=0,sd=1)
net[clu==2,clu==2]<-rnorm(n=tclu[2]*tclu[2],mean=0,sd=1)

#Ploting the network
plot.mat(M=net, clu=clu)
class(net)<-"mat"
plot(net, clu=clu)
#See corespodning functions for examples for other plotting 
#functions
#presented, that are esentially only the wrappers for "plot.max"
# }

Run the code above in your browser using DataLab