Learn R Programming

pathmox (version 0.2.0)

plot.treemox: Plot PATHMOX and TECHMOX trees

Description

The function plot.treemox allows to display binary trees of PATHMOX and TECHMOX analyses. If shadow.size=0, no shadows are drawn.

Usage

"plot" (x, root.col = "#eeeeee", root.bor = "#cccccc", root.txt = "#757575", root.cex = 0.8, root.lwd = 3, root.shadow = "gray40", node.col = "#feb769", node.bor = "#FE9929", node.txt = "#555555", node.cex = 0.7, node.lwd = 3, node.shadow = "gray30", leaf.col = "#93c4e5", leaf.bor = "#5a99c5", leaf.txt = "#555555", leaf.cex = 0.7, leaf.lwd = 3, leaf.shadow = "gray30", shadow.size = 0, arr.lwd = 3, lcol = "#ddddddbb", arr.col = "gray95", seg.cex = 0.7, seg.col = "#2cb0a7", cat.cex = 0.8, cat.col = "#555555", show.pval = TRUE, pval.col = "#2cb0a7", main = NULL, cex.main = 1, col.main = "gray50", ...)

Arguments

x
An object of class "treemox" returned by pathmox or techmox.
root.col
Fill color of root node.
root.bor
Border color of root node.
root.txt
Text color of root node.
root.cex
magnification to be used for text in root node.
root.lwd
Line width of border in the root node.
root.shadow
Color of shadow of root node.
node.col
Fill color of child nodes.
node.bor
Border color of child nodes.
node.txt
Text color of child nodes.
node.cex
magnification to be used for text in child nodes.
node.lwd
Line width of border in child nodes.
node.shadow
Color of shadow of child nodes.
leaf.col
Fill color of leaf nodes.
leaf.bor
Border color of leaf nodes.
leaf.txt
Text color of leaf nodes.
leaf.cex
magnification to be used for text in leaf nodes.
leaf.lwd
Line width of border in leaf nodes.
leaf.shadow
Color of shadow of leaf nodes.
shadow.size
Relative size of shadows.
arr.lwd
Line width of the tree branches.
lcol
color of lines
arr.col
color of arrows
seg.cex
A numerical value indicating the magnification to be used for plotting text.
seg.col
The color to be used for the labels of the segmentation variables.
cat.cex
magnification to be used for the categories
cat.col
The color to be used for the labels of the categories
show.pval
Logical value indicating whether the p-values should be plotted.
pval.col
The color to be used for the labels of the p-values.
main
A main title for the plot.
cex.main
The magnification to be used for the main title.
col.main
Color to be used for the main title
...
Further arguments are ignored.

Examples

Run this code
## Not run: 
#  ## example of PLS-PM in customer satisfaction analysis
#  ## model with seven LVs and reflective indicators
#  data(csimobile)
# 
#  # select manifest variables
#  data_mobile = csimobile[,8:33]
# 
#  # define path matrix (inner model)
#  IMAG = c(0, 0, 0, 0, 0, 0, 0)
#  EXPE = c(1, 0, 0, 0, 0, 0, 0)
#  QUAL = c(0, 1, 0, 0, 0, 0, 0)
#  VAL = c(0, 1, 1, 0, 0, 0, 0)
#  SAT = c(1, 1, 1, 1, 0, 0, 0)
#  COM = c(0, 0, 0, 0, 1, 0, 0)
#  LOY = c(1, 0, 0, 0, 1, 1, 0)
#  mob_path = rbind(IMAG, EXPE, QUAL, VAL, SAT, COM, LOY)
# 
#  # blocks of indicators (outer model)
#  mob_outer = list(1:5, 6:9, 10:15, 16:18, 19:21, 22:24, 25:26)
#  mob_modes = rep("A", 7)
# 
#  # apply plspm
#  mob_pls = plspm(data_mobile, mob_path, mob_blocks, modes = mob_modes,
#                  scheme = "factor", scaled = FALSE)
# 
#  # re-ordering those segmentation variables with ordinal scale
#  # (Age and Education)
#  csimobile$Education = factor(csimobile$Education,
#      levels=c("basic","highschool","university"),
#      ordered=TRUE)
# 
#  # select the segmentation variables
#  seg_vars = csimobile[,1:7]
# 
#  # Pathmox Analysis
#  mob_pathmox = pathmox(mob_pls, seg_vars, signif=.10, size=.10, deep=2)
# 
#  # plot pathmox tree
#  plot(mob_pathmox, root.col="lightblue", node.col="turquoise", leaf.col="skyblue3",
#       shadow.size=0, seg.col="blue2", pval.col="magenta")
#  ## End(Not run)

Run the code above in your browser using DataLab