# NOT RUN {
data(Groceries)
rules <- apriori(Groceries, parameter=list(support=0.001, confidence=0.8))
rules
## Scatterplot
## -----------
plot(rules)
## Scatterplot with custom colors
library(colorspace) # for sequential_hcl
plot(rules, control = list(col=sequential_hcl(100)))
plot(rules, col=sequential_hcl(100))
plot(rules, col=grey.colors(50, alpha =.8))
## See all control options using verbose
plot(rules, verbose = TRUE)
## Interactive plot (selected rules are returned)
# }
# NOT RUN {
sel <- plot(rules, engine = "interactive")
# }
# NOT RUN {
## Create a html widget for interactive visualization
# }
# NOT RUN {
plot(rules, engine = "htmlwidget")
# }
# NOT RUN {
## Two-key plot (is a scatterplot with shading = "order")
plot(rules, method = "two-key plot")
## Matrix shading
## --------------
## The following techniques work better with fewer rules
subrules <- subset(rules, lift>5)
subrules
## 2D matrix with shading
plot(subrules, method="matrix")
## 3D matrix
plot(subrules, method="matrix", engine = "3d")
## Matrix with two measures
plot(subrules, method="matrix", shading=c("lift", "confidence"))
## Reorder rules
plot(subrules, method="matrix", control = list(reorder = "none"))
plot(subrules, method="matrix", control = list(reorder = "support/confidence"))
plot(subrules, method="matrix", control = list(reorder = "similarity"))
## Interactive matrix plot (default interactive and as a html widget)
# }
# NOT RUN {
plot(subrules, method="matrix", engine="interactive")
plot(subrules, method="matrix", engine="htmlwidget")
# }
# NOT RUN {
## Grouped matrix plot
## -------------------
plot(rules, method="grouped matrix")
plot(rules, method="grouped matrix",
col = grey.colors(10),
gp_labels = gpar(col = "blue", cex=1, fontface="italic"))
## Interactive grouped matrix plot
# }
# NOT RUN {
sel <- plot(rules, method="grouped", engine = "interactive")
# }
# NOT RUN {
## Graphs
## ------
## Graphs only work well with very few rules
subrules2 <- sample(subrules, 25)
plot(subrules2, method="graph")
## Custom colors
plot(subrules2, method="graph",
nodeCol = grey.colors(10), edgeCol = grey(.7), alpha = 1)
## igraph layout generators can be used (see ? igraph::layout_)
plot(subrules2, method="graph", layout=igraph::in_circle())
plot(subrules2, method="graph",
layout=igraph::with_graphopt(spring.const=5, mass=50))
## Graph rendering using Graphviz
# }
# NOT RUN {
plot(subrules2, method="graph", engine="graphviz")
# }
# NOT RUN {
## Default interactive plot (using igraph's tkplot)
# }
# NOT RUN {
plot(subrules2, method="graph", engine = "interactive")
# }
# NOT RUN {
## Interactive graph as a html widget (using igraph layout)
# }
# NOT RUN {
plot(subrules2, method="graph", engine="htmlwidget")
plot(subrules2, method="graph", engine="htmlwidget",
igraphLayout = "layout_in_circle")
# }
# NOT RUN {
## Parallel coordinates plot
## -------------------------
plot(subrules2, method="paracoord")
plot(subrules2, method="paracoord", control = list(reorder=TRUE))
## Doubledecker plot
## -----------------
## Note: only works for a single rule
oneRule <- sample(rules, 1)
inspect(oneRule)
plot(oneRule, method="doubledecker", data = Groceries)
## Itemsets
## --------
itemsets <- eclat(Groceries, parameter = list(support = 0.02, minlen=2))
plot(itemsets)
plot(itemsets, method="graph")
plot(itemsets, method="paracoord", alpha=.5, reorder=TRUE)
## Add more quality measures to use for the scatterplot
## ----------------------------------------------------
quality(itemsets) <- interestMeasure(itemsets, trans=Groceries)
head(quality(itemsets))
plot(itemsets, measure=c("support", "allConfidence"), shading="lift")
## Save HTML widget as web page
## ----------------------------
# }
# NOT RUN {
p <- plot(rules, engine = "html")
htmlwidgets::saveWidget(p, "arules.html", selfcontained = FALSE)
browseURL("arules.html")
# }
# NOT RUN {
# Note: selfcontained seems to make the browser slow.
# }
Run the code above in your browser using DataLab