powered by
Plot Markov chain Monte Carlo autocorrelation over a range of lag values. This is a diagnostic plot for deciding whether a chain needs further thinning.
plotAuto(mcmc, thin=1, log=FALSE, base=10, main=NULL, xlab="Lag", ylab="Autocorrelation", lty=1, lwd=1, col="black", …)
MCMC chain(s) as a vector, data frame or mcmc object.
mcmc
interval to subsample chain(s), or 1 to keep chain intact.
whether values should be log-transformed.
logarithm base.
main title.
x-axis label.
y-axis label.
line type.
line width.
line color.
passed to autocorr.plot, title, and axis.
autocorr.plot
title
axis
Null, but a plot is drawn on the current graphics device.
autocorr.plot is the underlying plotting function, and window.mcmc is used to optionally thin the chain(s).
window.mcmc
plotTrace, plotAuto, plotCumu, and plotSplom are diagnostic plots.
plotTrace
plotAuto
plotCumu
plotSplom
plotDens and plotQuant are posterior plots.
plotDens
plotQuant
plotMCMC-package gives an overview of the package.
plotMCMC-package
# NOT RUN { plotAuto(xpar$R0) plotAuto(xpar$R0, thin=10) plotAuto(xpar, lag.max=50, ann=FALSE, axes=FALSE) # }
Run the code above in your browser using DataLab