Learn R Programming

mcr (version 1.2.1)

MCResult.plotResiduals: Plot Residuals of an MCResult Object

Description

Plot Residuals of an MCResult Object

Usage

MCResult.plotResiduals(.Object, res.type = c("optimized", "y", "x"),
  xaxis = c("yhat", "both", "xhat"), ref.line = TRUE,
  ref.line.col = "red", ref.line.lty = 2, ref.line.lwd = 1, main = NULL,
  xlab = NULL, ylab = NULL, add.grid = TRUE, ...)

Arguments

.Object

object of type "MCResult".

res.type

If res.type="y" the difference between the test method and it's prediction will be drawn. If res.type="x" the reference method and it's prediction will be drawn. In case ordinary and weighted ordinary linear regression this difference will be zero.

xaxis

Values on the x-axis. One can choose from estimated values of x (xaxis="xhat"), y (xaxis="xhat") or the mean of estimated values of x and y (xaxis="both"). If res.type="optimized" the proper type of residuals for each regression will be drawn.

ref.line

logical value. If ref.line = TRUE (default), the reference line will be drawn.

ref.line.col

reference line color.

ref.line.lty

reference line type.

ref.line.lwd

reference line width.

xlab

label for the x-axis

ylab

label for the y-axis

add.grid

logical value. If add.grid = TRUE (default) the gridlines will be drawn.

main

character string specifying the main title of the plot

...

further graphical parameters

See Also

getResiduals, plot.mcr, plotDifference, plotBias, compareFit

Examples

Run this code
# NOT RUN {
data(creatinine,package="mcr")
    x <- creatinine$serum.crea
    y <- creatinine$plasma.crea

    # Deming regression fit.
    # The confidence intercals for regression coefficients
    # are calculated with analytical method
    model <- mcreg( x,y,error.ratio=1,method.reg="WDeming", method.ci="jackknife",
                     mref.name = "serum.crea", mtest.name = "plasma.crea", na.rm=TRUE )
    plotResiduals(model, res.type="optimized", xaxis="both" )
    plotResiduals(model, res.type="y", xaxis="yhat")
# }

Run the code above in your browser using DataLab