
calcSigmaGR
function.
plotSigmaGR(calcSigmaGR, mar = c(3, 3, 2, 2), mgp = c(2, 0.75, 0), main = "", col = c("black", grDevices::rainbow(5)), criterion = c("n.obs", "transition", "sdfront", "entropy", "Kalinsky", "Laboure"), name_criteria = c("region size", "boundary transition", "boundary heterogeneity", "region entropy", "region Kalinsky", "region Laboure"), filename = "calcSigmaGR", ...)
calcSigmaGR
function. REQUIRED.window
, width
, height
, path
, unit
, res
(see optionsMRIaggr
).calcSigmaGR
to compute the quality criteria.
## load an \code{MRIaggr} object
data(MRIaggr.Pat1_red, package = "MRIaggr")
calcThresholdMRIaggr(MRIaggr.Pat1_red,param = c("TTP_t0","MTT_t0"), threshold = 1:10,
name_newparam = c("TTP.th_t0","MTT.th_t0"),
update.object = TRUE, overwrite = TRUE)
## display raw parameter
multiplot(MRIaggr.Pat1_red, param = "TTP.th_t0", num = 3, numeric2logical = TRUE,
index1 = list(coords = "MASK_DWI_t0", outline = TRUE))
## extract raw parameter, coordinates and compute the neighbourhood matrix
carto <- selectContrast(MRIaggr.Pat1_red, num = 3, hemisphere = "lesion",
param = c("TTP.th_t0","TTP_t0","MASK_DWI_t0"))
coords <- selectCoords(MRIaggr.Pat1_red, num = 3, hemisphere = "lesion")
W <- calcW(coords, range = sqrt(2))$W
## the seed is taken to be the point with the largest TTP in the lesion mask
indexN <- which(carto$MASK_DWI_t0 == 1)
seed <- indexN[which.max(carto[indexN,"TTP_t0"])]
## find optimal sigma
resGR_sigma <- calcSigmaGR(contrast = carto$TTP.th_t0, W = W, seed = seed,
sigma = seq(1,4,0.1), iter_max = 50,
keep.upper = TRUE)
## display quality criteria according to sigma
plotSigmaGR(resGR_sigma)
plotSigmaGR(resGR_sigma, criterion = "entropy")
Run the code above in your browser using DataLab