
plot_threshold(graph, expo, toa, include_censored = FALSE, t0 = min(toa, na.rm = TRUE), attrs = NULL, undirected = getOption("diffnet.undirected"), no.contemporary = TRUE, main = "Time of Adoption by Network Threshold", xlab = "Time", ylab = "Threshold", vertex.cex = "degree", vertex.col = rgb(0.3, 0.3, 0.8, 0.5), vertex.label = "", vertex.lab.pos = NULL, vertex.lab.cex = 1, vertex.lab.adj = c(0.5, 0.5), vertex.lab.col = rgb(0.3, 0.3, 0.8, 0.9), vertex.sides = 40L, vertex.rot = 0, edge.width = 2, edge.col = rgb(0.6, 0.6, 0.6, 0.1), arrow.length = 0.2, include.grid = TRUE, bty = "n", vertex.bcol = vertex.col, jitter.factor = c(1, 0), jitter.amount = c(0.25, 0), xlim = NULL, ylim = NULL, ...)
netdiffuseR-graphs
).exposure
threshold
.threshold
.exposure
(via threshold).TRUE
only the lower triangle will be processed.toa
won't be plotted.text
via pos
.text
.text
.text
.arrows
.par
.jitter
.jitter
.plot
.plot
.plot
.vertex.label=NULL
the function uses vertices ids as labels.
By default vertex.label=""
plots no labels.Vertices are drawn using an internal function for generating polygons.
Polygons are inscribed in a circle of radius vertex.cex
, and can be
rotated using vertex.rot
. The number of sides of each polygon
is set via vertex.sides
.
threshold
to retrieve the corresponding threshold
obtained returned by exposure
.Other visualizations: dgr
,
diffusionMap
, drawColorKey
,
grid_distribution
,
hazard_rate
, plot_adopters
,
plot_diffnet2
, plot_diffnet
,
plot_infectsuscep
,
rescale_vertex_igraph
# Generating a random graph
set.seed(1234)
n <- 6
nper <- 5
graph <- rgraph_er(n,nper, p=.3, undirected = FALSE)
toa <- sample(2000:(2000+nper-1), n, TRUE)
adopt <- toa_mat(toa)
# Computing exposure
expos <- exposure(graph, adopt$cumadopt)
plot_threshold(graph, expos, toa)
# Calculating degree (for sizing the vertices)
plot_threshold(graph, expos, toa, vertex.cex = "indegree")
Run the code above in your browser using DataLab