plotqtplot.lmscreg(fitted.values, object, newdata = NULL,
percentiles = object@misc$percentiles, lp = NULL,
add.arg = FALSE, y = if (length(newdata)) FALSE else TRUE,
spline.fit = FALSE, label = TRUE, size.label = 0.06,
xlab = NULL, ylab = "",
pch = par()$pch, pcex = par()$cex, pcol.arg = par()$col,
xlim = NULL, ylim = NULL,
llty.arg = par()$lty, lcol.arg = par()$col, llwd.arg = par()$lwd,
tcol.arg = par()$col, tadj = 1, ...)
percentiles
.par
.par
.par
.par
.col
argument of par
.par
.par
.lty
argument of par
.col
argument of par
.lwd
argument of par
.label
is TRUE
).
See the col
argument of par
.adj
argument of par
.plot
function
when setting up the entire plot. Useful arguments here include
main
and las
.qtplot.lmscreg
.fit <- vgam(BMI ~ s(age, df = c(4,2)), lms.bcn(zero = 1), data = bmi.nz)
qtplot(fit)
qtplot(fit, perc = c(25,50,75,95), lcol = "blue", tcol = "blue", llwd = 2)
Run the code above in your browser using DataLab