## example of PLS-PM in ecological analysis
## model with three LVs and formative indicators
data(arizona)
ari.inner <- matrix(c(0,0,0,0,0,0,1,1,0),3,3,byrow=TRUE)
dimnames(ari.inner) <- list(c("ENV","SOIL","DIV"),c("ENV","SOIL","DIV"))
ari.outer <- list(c(1,2),c(3,4,5),c(6,7,8))
ari.mod <- c("B","B","B") ## formative indicators
res1 <- plspm(arizona, inner=ari.inner, outer=ari.outer, modes=ari.mod,
scheme="factor", scaled=TRUE, plsr=TRUE)
res1
summary(res1)
## typical example of PLS-PM in customer satisfaction analysis
## model with six LVs and reflective indicators
data(satisfaction)
IMAG <- c(0,0,0,0,0,0)
EXPE <- c(1,0,0,0,0,0)
QUAL <- c(0,1,0,0,0,0)
VAL <- c(0,1,1,0,0,0)
SAT <- c(1,1,1,1,0,0)
LOY <- c(1,0,0,0,1,0)
sat.inner <- rbind(IMAG, EXPE, QUAL, VAL, SAT, LOY)
sat.outer <- list(1:5,6:10,11:15,16:19,20:23,24:27)
sat.mod <- rep("A",6) ## reflective indicators
res2 <- plspm(satisfaction, sat.inner, sat.outer, sat.mod, scaled=FALSE, boot.val=TRUE)
summary(res2)
plot(res2)
## example of PLS-PM in sensory analysis
## estimate a path model for the orange juice data
data(orange)
senso.inner <- matrix(c(0,0,0,1,0,0,1,1,0),3,3,byrow=TRUE)
dimnames(senso.inner) <- list(c("PHYCHEM","SENSORY","HEDONIC"),
c("PHYCHEM","SENSORY","HEDONIC"))
senso.outer <- list(1:9,10:16,17:112)
senso.mod <- rep("A",3)
res3 <- plspm.fit(orange, senso.inner, senso.outer, senso.mod,
scheme="centroid", scaled=TRUE)
summary(res3)
## example of PLS-PM in multi-block data analysis
## estimate a path model for the wine data set
## requires package FactoMineR
library(FactoMineR)
data(wine)
SMELL <- c(0,0,0,0)
VIEW <- c(1,0,0,0)
SHAKE <- c(1,1,0,0)
TASTE <- c(1,1,1,0)
wine.inner <- rbind(SMELL,VIEW,SHAKE,TASTE)
wine.outer <- list(3:7,8:10,11:20,21:29)
wine.mods <- rep("A",4)
# using function plspm.fit (basic pls algorithm)
res4 <- plspm.fit(wine, wine.inner, wine.outer, wine.mods, scheme="centroid")
plot(res4, what="all", arr.pos=.4, box.prop=.4, cex.txt=.8)
Run the code above in your browser using DataLab