
poissonff(link = "loge", earg=list(), dispersion = 1, onedpar = FALSE,
imu = NULL, imethod = 1, parallel = FALSE, zero = NULL)
Links
for more choices
and information.dispersion = 0
to have it estimated, or
else specify a known positive value (or values if the respononedpar=TRUE
will pool them so that there is only
one dispersion parameter toCommonVGAMffArguments
for more information.If the dispersion parameter is unknown, then the resulting estimate is not fully a maximum likelihood estimate.
A dispersion parameter that is less/greater than unity corresponds to under-/over-dispersion relative to the Poisson model. Over-dispersion is more common in practice.
When fitting a Quadratic RR-VGLM (see cqo
), the
response is a matrix of $M$, say, columns (e.g., one column
per species). Then there will be $M$ dispersion parameters
(one per column of the response matrix) if dispersion = 0
and
onedpar = FALSE
.
Links
,
quasipoissonff
,
genpoisson
,
zipoisson
,
skellam
,
mix2poisson
,
cenpoisson
,
ordpoisson
,
amlpoisson
,
invbinomial
,
loge
,
polf
,
rrvglm
,
cqo
,
cao
,
binomialff
,
quasibinomialff
,
poisson
,
poissonp
.poissonff()
pdat = data.frame(x = rnorm(nn <- 100))
pdat = transform(pdat, y = rpois(nn, exp(1+x)))
(fit = vglm(y ~ x, family = poissonff, pdat))
coef(fit, matrix = TRUE)
nn = 200
cdat = data.frame(x2 = rnorm(nn), x3 = rnorm(nn), x4 = rnorm(nn))
cdat = transform(cdat, lv1 = 0 + x3 - 2*x4)
cdat = transform(cdat, lambda1 = exp(3 - 0.5 * (lv1-0)^2),
lambda2 = exp(2 - 0.5 * (lv1-1)^2),
lambda3 = exp(2 - 0.5 * ((lv1+4)/2)^2))
cdat = transform(cdat, y1 = rpois(nn, lambda1),
y2 = rpois(nn, lambda2),
y3 = rpois(nn, lambda3))
# vvv p1 = cqo(cbind(y1,y2,y3) ~ x2 + x3 + x4, poissonff, cdat,
# vvv EqualTol = FALSE, ITol = FALSE)
# vvv summary(p1) # # Three dispersion parameters are all unity
lvplot(p1, y = TRUE, lcol = 2:4, pch = 2:4, pcol = 2:4, rug = FALSE)
Run the code above in your browser using DataLab