
Family function for a generalized linear model fitted to Poisson responses. The dispersion parameters may be known or unknown.
poissonff(link = "loge", dispersion = 1, onedpar = FALSE, imu = NULL,
imethod = 1, parallel = FALSE, zero = NULL, bred = FALSE,
earg.link = FALSE, type.fitted = c("mean", "quantiles"),
percentiles = c(25, 50, 75))
Link function applied to the mean or means.
See Links
for more choices
and information.
Dispersion parameter. By default, maximum
likelihood is used to estimate the model because it is known.
However, the user can specify
dispersion = 0
to have it estimated, or
else specify a known positive value (or values if the response
is a matrix---one value per column).
One dispersion parameter? If the response is a matrix,
then a separate
dispersion parameter will be computed for each response (column),
by default.
Setting onedpar=TRUE
will pool them so that there is only
one dispersion parameter to be estimated.
A logical or formula. Used only if the response is a matrix.
See CommonVGAMffArguments
for more information.
Can be an integer-valued vector specifying which linear/additive
predictors
are modelled as intercepts only. The values must be from the set
{1,2,…,CommonVGAMffArguments
for more information.
Details at CommonVGAMffArguments
.
Setting bred = TRUE
should work for
multiple responses and all VGAM link functions;
it has been tested for
loge
,
identity
but further testing is required.
Details at CommonVGAMffArguments
.
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as
vglm
,
vgam
,
rrvglm
,
cqo
,
and cao
.
With multiple responses, assigning a known dispersion parameter for each response is not handled well yet. Currently, only a single known dispersion parameter is handled well.
If the dispersion parameter is unknown, then the resulting estimate is not fully a maximum likelihood estimate.
A dispersion parameter that is less/greater than unity corresponds to under-/over-dispersion relative to the Poisson model. Over-dispersion is more common in practice.
When fitting a Quadratic RR-VGLM (see cqo
), the
response is a matrix of dispersion = 0
and
onedpar = FALSE
.
McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd ed. London: Chapman & Hall.
Links
,
quasipoissonff
,
hdeff.vglm
,
genpoisson
,
zipoisson
,
pospoisson
,
oipospoisson
,
otpospoisson
,
skellam
,
mix2poisson
,
cens.poisson
,
ordpoisson
,
amlpoisson
,
inv.binomial
,
simulate.vlm
,
loge
,
polf
,
rrvglm
,
cqo
,
cao
,
binomialff
,
quasibinomialff
,
poisson
,
Poisson
,
poisson.points
,
ruge
,
V1
.
# NOT RUN {
poissonff()
set.seed(123)
pdata <- data.frame(x2 = rnorm(nn <- 100))
pdata <- transform(pdata, y1 = rpois(nn, exp(1 + x2)),
y2 = rpois(nn, exp(1 + x2)))
(fit1 <- vglm(cbind(y1, y2) ~ x2, poissonff, data = pdata))
(fit2 <- vglm(y1 ~ x2, poissonff(bred = TRUE), data = pdata))
coef(fit1, matrix = TRUE)
coef(fit2, matrix = TRUE)
nn <- 200
cdata <- data.frame(x2 = rnorm(nn), x3 = rnorm(nn), x4 = rnorm(nn))
cdata <- transform(cdata, lv1 = 0 + x3 - 2*x4)
cdata <- transform(cdata, lambda1 = exp(3 - 0.5 * (lv1-0)^2),
lambda2 = exp(2 - 0.5 * (lv1-1)^2),
lambda3 = exp(2 - 0.5 * ((lv1+4)/2)^2))
cdata <- transform(cdata, y1 = rpois(nn, lambda1),
y2 = rpois(nn, lambda2),
y3 = rpois(nn, lambda3))
# }
# NOT RUN {
lvplot(p1, y = TRUE, lcol = 2:4, pch = 2:4, pcol = 2:4, rug = FALSE)
# }
Run the code above in your browser using DataLab