Learn R Programming

VGAM (version 0.9-6)

pospoisson: Positive Poisson Distribution Family Function

Description

Fits a positive Poisson distribution.

Usage

pospoisson(link = "loge", expected = TRUE,
           ilambda = NULL, imethod = 1, zero = NULL)

Arguments

link
Link function for the usual mean (lambda) parameter of an ordinary Poisson distribution. See Links for more choices.
expected
Logical. Fisher scoring is used if expected = TRUE, else Newton-Raphson.
ilambda, imethod, zero
See CommonVGAMffArguments for more information.

Value

Warning

Under- or over-flow may occur if the data is ill-conditioned.

Details

The positive Poisson distribution is the ordinary Poisson distribution but with the probability of zero being zero. Thus the other probabilities are scaled up (i.e., divided by $1-P[Y=0]$). The mean, $\lambda / (1 - \exp(-\lambda))$, can be obtained by the extractor function fitted applied to the object.

A related distribution is the zero-inflated Poisson, in which the probability $P[Y=0]$ involves another parameter $\phi$. See zipoisson.

References

Coleman, J. S. and James, J. (1961) The equilibrium size distribution of freely-forming groups. Sociometry, 24, 36--45.

Documentation accompanying the VGAM package at http://www.stat.auckland.ac.nz/~yee contains further information and examples.

See Also

Pospois, posnegbinomial, poissonff, zipoisson, simulate.vlm.

Examples

Run this code
# Data from Coleman and James (1961)
cjdata <- data.frame(y = 1:6, freq = c(1486, 694, 195, 37, 10, 1))
fit <- vglm(y ~ 1, pospoisson, data = cjdata, weights = freq)
Coef(fit)
summary(fit)
fitted(fit)

pdata <- data.frame(x2 = runif(nn <- 1000))  # Artificial data
pdata <- transform(pdata, lambda = exp(1 - 2 * x2))
pdata <- transform(pdata, y1 = rpospois(nn, lambda))
with(pdata, table(y1))
fit <- vglm(y1 ~ x2, pospoisson, data = pdata, trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)

Run the code above in your browser using DataLab