
Fits a positive Poisson distribution.
pospoisson(link = "loglink", type.fitted = c("mean", "lambda", "prob0"),
expected = TRUE, ilambda = NULL, imethod = 1, zero = NULL)
Link function for the usual mean (lambda) parameter of
an ordinary Poisson distribution.
See Links
for more choices.
Logical.
Fisher scoring is used if expected = TRUE
, else Newton-Raphson.
See CommonVGAMffArguments
for information.
See CommonVGAMffArguments
for details.
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
rrvglm
and vgam
.
Under- or over-flow may occur if the data is ill-conditioned.
The positive Poisson distribution is the ordinary Poisson
distribution but with the probability of zero being zero. Thus the
other probabilities are scaled up (i.e., divided by fitted
applied to
the object.
A related distribution is the zero-inflated Poisson, in which the
probability zipoisson
.
Coleman, J. S. and James, J. (1961) The equilibrium size distribution of freely-forming groups. Sociometry, 24, 36--45.
Pospois
,
gentpoisson
,
posnegbinomial
,
poissonff
,
otpospoisson
,
zapoisson
,
zipoisson
,
simulate.vlm
.
# NOT RUN {
# Data from Coleman and James (1961)
cjdata <- data.frame(y = 1:6, freq = c(1486, 694, 195, 37, 10, 1))
fit <- vglm(y ~ 1, pospoisson, data = cjdata, weights = freq)
Coef(fit)
summary(fit)
fitted(fit)
pdata <- data.frame(x2 = runif(nn <- 1000)) # Artificial data
pdata <- transform(pdata, lambda = exp(1 - 2 * x2))
pdata <- transform(pdata, y1 = rpospois(nn, lambda))
with(pdata, table(y1))
fit <- vglm(y1 ~ x2, pospoisson, data = pdata, trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
# }
Run the code above in your browser using DataLab