plot(possummask)
plot(possumCH, tracks = TRUE, add = TRUE)
plot(traps(possumCH), add = TRUE)
lines(possumarea)
summary(possumCH)
## compare & average pre-fitted models
AIC(possum.model.0, possum.model.b, possum.model.h2)
model.average(possum.model.0, possum.model.b, possum.model.h2)
## Roughly estimate tag-loss error by dropping dubious histories
## i.e. restrict to "not previously tagged"
NPT <- !covariates(possumCH)$prev.tagged
possum.model.0.NPT <- secr.fit(subset(possumCH,NPT), mask =
possummask, trace=F)
predict(possum.model.0)[1,2]/ predict(possum.model.0.NPT)[1,2]
## ...about 9%
Run the code above in your browser using DataLab