Learn R Programming

brms (version 2.12.0)

posterior_linpred.brmsfit: Posterior Samples of the Linear Predictor

Description

Compute posterior samples of the linear predictor, that is samples before applying any link functions or other transformations. Can be performed for the data used to fit the model (posterior predictive checks) or for new data.

Usage

# S3 method for brmsfit
posterior_linpred(
  object,
  transform = FALSE,
  newdata = NULL,
  re_formula = NULL,
  re.form = NULL,
  resp = NULL,
  dpar = NULL,
  nlpar = NULL,
  nsamples = NULL,
  subset = NULL,
  sort = FALSE,
  ...
)

Arguments

object

An object of class brmsfit.

transform

(Deprecated) Logical; if FALSE (the default), samples of the linear predictor are returned. If TRUE, samples of transformed linear predictor, that is, the mean of the posterior predictive distribution are returned instead (see pp_expect for details). Only implemented for compatibility with the posterior_linpred generic.

newdata

An optional data.frame for which to evaluate predictions. If NULL (default), the original data of the model is used. NA values within factors are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding.

re_formula

formula containing group-level effects to be considered in the prediction. If NULL (default), include all group-level effects; if NA, include no group-level effects.

re.form

Alias of re_formula.

resp

Optional names of response variables. If specified, predictions are performed only for the specified response variables.

dpar

Optional name of a predicted distributional parameter. If specified, fitted values of this parameters are returned.

nlpar

Optional name of a predicted non-linear parameter. If specified, fitted values of this parameters are returned.

nsamples

Positive integer indicating how many posterior samples should be used. If NULL (the default) all samples are used. Ignored if subset is not NULL.

subset

A numeric vector specifying the posterior samples to be used. If NULL (the default), all samples are used.

sort

Logical. Only relevant for time series models. Indicating whether to return predicted values in the original order (FALSE; default) or in the order of the time series (TRUE).

...

Further arguments passed to extract_draws that control several aspects of data validation and prediction.

See Also

pp_expect.brmsfit

Examples

Run this code
# NOT RUN {
## fit a model
fit <- brm(rating ~ treat + period + carry + (1|subject), 
           data = inhaler)

## extract linear predictor values
pl <- posterior_linpred(fit)
str(pl)
# }
# NOT RUN {
# }

Run the code above in your browser using DataLab