# NOT RUN {
# we construct the composite event indicator (transplantation or death)
pbc2$status2 <- as.numeric(pbc2$status != "alive")
pbc2.id$status2 <- as.numeric(pbc2.id$status != "alive")
# we fit the joint model using splines for the subject-specific
# longitudinal trajectories and a spline-approximated baseline
# risk function
lmeFit <- lme(log(serBilir) ~ ns(year, 3),
random = list(id = pdDiag(form = ~ ns(year, 3))), data = pbc2)
survFit <- coxph(Surv(years, status2) ~ drug, data = pbc2.id, x = TRUE)
jointFit <- jointModel(lmeFit, survFit, timeVar = "year",
method = "piecewise-PH-aGH")
# prediction error at year 10 using longitudinal data up to year 5
prederrJM(jointFit, pbc2, Tstart = 5, Thoriz = 10)
prederrJM(jointFit, pbc2, Tstart = 5, Thoriz = 6.5, interval = TRUE)
# }
Run the code above in your browser using DataLab