ctmm movement model (and optional telemetry data to condition upon) these functions predict or simulate animal locations over a prescribed set of times.predict(object,...)# S3 method for ctmm
predict(object,data=NULL,t=NULL,dt=NULL,res=1,...)
# S3 method for telemetry
predict(object,CTMM=NULL,t=NULL,dt=NULL,res=1,...)
simulate(object,nsim=1,seed=NULL,...)
# S3 method for ctmm
simulate(object,nsim=1,seed=NULL,data=NULL,t=NULL,dt=NULL,res=1,...)
# S3 method for telemetry
simulate(object,nsim=1,seed=NULL,CTMM=NULL,t=NULL,dt=NULL,res=1,...)
ctmm movement-model or telemetry object, which requires an additional CTMM argument.telemetry object on which the prediction or simulation will be conditioned.data is specified.data time.ctmm movement-model in the same format as the output of ctmm.fit or variogram.fit.telemetry object with components t, x, and y, or a predicted telemetry object that also includes x-y covariances for the location point estimates x and y.ctmm model object and optionally can be conditioned off of telemetry data, if specified.
If no data is provided, the simulation will be purely Gaussian.
Details of the movement model parameters can be found in ctmm.fit. The t argument fixes the output times to a specific array of times.
The dt and res arguments are relative to the sampling schedule present in the optional telemetry object.
The same span of time will be used, while dt will fix the sampling rate absolutely and res will fix the sampling rate relative to that of the data.ctmm.fit#Load package and data
library(ctmm)
#prepare simulation parameters
t <- 1:1000
MODEL <- ctmm(tau=c(100,10),sigma=10,mu=c(0,0))
#simulate data
SIM <- simulate(MODEL,t=t)
#plot data with Gaussian model
plot(SIM,CTMM=MODEL)
Run the code above in your browser using DataLab