Learn R Programming

kernlab (version 0.9-24)

predict.gausspr: predict method for Gaussian Processes object

Description

Prediction of test data using Gaussian Processes

Usage

"predict"(object, newdata, type = "response", coupler = "minpair")

Arguments

object
an S4 object of class gausspr created by the gausspr function
newdata
a data frame or matrix containing new data
type
one of response, probabilities indicating the type of output: predicted values or matrix of class probabilities
coupler
Coupling method used in the multiclass case, can be one of minpair or pkpd (see reference for more details).

Value

response
predicted classes (the classes with majority vote) or the response value in regression.
probabilities
matrix of class probabilities (one column for each class and one row for each input).

References

Examples

Run this code

## example using the promotergene data set
data(promotergene)

## create test and training set
ind <- sample(1:dim(promotergene)[1],20)
genetrain <- promotergene[-ind, ]
genetest <- promotergene[ind, ]

## train a support vector machine
gene <- gausspr(Class~.,data=genetrain,kernel="rbfdot",
                kpar=list(sigma=0.015))
gene

## predict gene type probabilities on the test set
genetype <- predict(gene,genetest,type="probabilities")
genetype

Run the code above in your browser using DataLab