Learn R Programming

survival (version 2.11-4)

predict.survreg: Predicted Values for a `survreg' Object

Description

Predicted values for a survreg object

Usage

## S3 method for class 'survreg':
predict(object, newdata, 
type=c("response", "link", "lp", "linear",  "terms", "quantile", 
	"uquantile"), 
se.fit=FALSE, terms=NULL, p=c(0.1, 0.9),...)

Arguments

object
result of a model fit using the survreg function.
newdata
data for prediction. If absent, predictions are for the subjects used in the original fit.
type
the type of predicted value. This can be on the original scale of the data (response), the linear predictor ("linear", with "lp" as an allowed abbreviation), a predicted quantile on the original scale of the data ("quantil
se.fit
if TRUE, include the standard errors of the prediction in the result.
terms
subset of terms. The default for residual type "terms" is a matrix with one column for every term (excluding the intercept) in the model.
p
vector of percentiles. This is used only for quantile predictions.
...
other arguments

Value

  • a vector or matrix of predicted values.

References

Escobar and Meeker (1992). Assessing influence in regression analysis with censored data. Biometrics, 48, 507-528.

See Also

survreg, residuals.survreg

Examples

Run this code
# Draw figure 1 from Escobar and Meeker
data(stanford2)
fit <- survreg(Surv(time,status) ~ age + age^2, data=stanford2,
	dist='lognormal')
plot(stanford2$age, stanford2$time, xlab='Age', ylab='Days',
	xlim=c(0,65), ylim=c(.01, 10^6), log='y')
pred <- predict(fit, newdata=list(age=1:65), type='quantile',
	         p=c(.1, .5, .9))
matlines(1:65, pred, lty=c(2,1,2), col=1)

Run the code above in your browser using DataLab